Subscribe to RSS
DOI: 10.1055/a-2197-7356
Organoselenium Compounds in Catalysis
This work was supported by grants from the Consejo Nacional de Investigaciones Científicas y Técnicas (PIP 112-202001-01544 CO), Agencia Nacional de Promoción Científica y Tecnológica (PICT-2018-03888), and the Universidad de Buenos Aires (20020170100067BA).
Abstract
In this article we have focused on the use of selenium in catalysis along with the proposed reaction mechanisms. With increasing interest in selenium chemistry, we have highlighted the most significant features of this subject, mainly in the last years. Selenium-containing catalysts have a key role in many transformations; for example, oxidation reactions that are performed under very mild and controlled conditions. In addition, utilizing the weak selenium–oxygen bonding interaction has proved to be very useful as a catalytic approach for specific transformations. The catalytic cycles of each appropriate transformation are fully reviewed.
1 Introduction
2 Use of Selenium in Catalysis: Perspectives
2.1 Selenium as Directing Group: Preparation of Organoselenium Compounds via C–H Borylation
2.2 Multicomponent Reactions Employing Selenium as a Catalyst
2.3 Selenium-π-Acid Catalysts
2.4 Electrochemical Selenium-Catalyzed Reactions
2.5 Stereoselective Synthesis Employing Organoselenium Catalysts
2.6 Transition-Metal Catalysts Containing Selenium-Based Ligands
2.6.1 Selenium-Ligated Palladium(II) Complexes as Catalysts for the Heck Reaction
2.6.2 Pincer Selenium Catalyst for the Allylation of Aldehydes and Closely Related Functional Groups
2.6.3 Selenium Employed in Buchwald-Type C–N Coupling Reactions
2.6.4 Organoselenium Catalysts in Suzuki–Miyaura Coupling Reactions
2.7 Organoselenium Catalysis in Michael-Type Reactions
2.8 Catalytic Cycle for Glutathione Peroxidase
2.9 Epoxidation
2.10 Dihydroxylation
2.11 Oxidation
2.12 Bromolactonization
2.13 Preparation of Alkenes from Vicinal Diols
2.14 Preparation of α-Selanyl Enals from Propargylic Alcohols
2.15 Miscellanea
3 Concluding Remarks
Key words
selenium - catalysis - organocatalysis - pincer catalysts - glutathione peroxidase - oxidationPublication History
Received: 19 July 2023
Accepted after revision: 24 October 2023
Accepted Manuscript online:
24 October 2023
Article published online:
02 January 2024
© 2024. Thieme. All rights reserved
Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany
-
References
- 1 Berzelius J. Ann. Phys. (Berlin, Ger.) 1817; 57: 24
- 2 Partington JR. Berzelius . In A History of Chemistry . Macmillan Education UK; London: 1964: 142-177
- 3 Löwig C. Ann. Phys. (Berlin, Ger.) 1836; 113: 550
- 4 Mugesh G, Singh HB. Chem. Soc. Rev. 2000; 29: 347
- 5 Rathke B. Ann. Chem. Pharm. 1869; 152: 181
- 6 Foster DG, Brown SF. J. Am. Chem. Soc. 1928; 50: 1182
- 7 Mukherjee AJ, Zade SS, Singh HB, Sunoj RB. Chem. Rev. 2010; 110: 4357
- 8 Rocha JB. T, Piccoli BC, Oliveira CS. ARKIVOC 2017; (ii): 457
- 9 Rayman MP. Lancet 2000; 356: 233
- 10 Sunde RA. Selenium . In Handbook of Nutritionally Essential Mineral Elements, Chap. 18. O’Dell BL, Sunde RA. Marcel Dekker; New York: 1997: 493
- 11 Mousa R, Notis Dardashti R, Metanis N. Angew. Chem. Int. Ed. 2017; 56: 15818
- 12 Stadtman TC. Annu. Rev. Biochem. 1996; 65: 83
- 13 Schrauzer GN. J. Nutr. 2000; 47: 1653
- 14 Schrauzer GN. Adv. Food Nutr. Res. 2003; 47: 73
- 15 Schrauzer GN. Crit. Rev. Biotechnol. 2009; 29: 10
- 16 Pappas AC, Zoidis E, Surai PF, Zervas G. Comp. Biochem. Physiol., Part B: Biochem. Mol. Biol. 2008; 151: 361
- 17 Zoidis E, Seremelis I, Kontopoulos N, Danezis G. Antioxidants 2018; 7: 66
- 18 Navarro-Alarcon M, Lopez-Martínez MC. Sci. Total Environ. 2000; 249: 347
- 19 Zhang W, Sheng J, Huang Z. Structures and Functions of Nucleic Acids Modified with S, Se, and Te and Complexed with Small Molecules. In Medicinal Chemistry of Nucleic Acids, Chap. 2. Zhang L.-H, Xi Z, Chattopadhyaya J. John Wiley & Sons; Hoboken: 2011: 101-141
- 20 Mills GC. J. Biol. Chem. 1957; 229: 189
- 21 Garud DR, Koketsu M, Ishihara H. Molecules 2007; 12: 504
- 22 Modak A, Pinter EN, Cook SP. J. Am. Chem. Soc. 2019; 141: 18405
- 23 Wei W, Liao L, Qin T, Zhao X. Org. Lett. 2019; 21: 7846
- 24 Dey A, Hajra A. J. Org. Chem. 2019; 84: 14904
- 25 Sommen GL, Linden A, Heimgartner H. Tetrahedron 2006; 62: 3344
- 26 Hondal RJ, Ruggles EL. Amino Acids 2011; 41: 73
- 27 Reich HJ, Hondal RJ. ACS Chem. Biol. 2016; 11: 821
- 28 Wessjohann LA, Schneider A, Abbas M, Brandt W. Biol. Chem. 2007; 388: 997
- 29 Shchedrina VA, Novoselov SV, Malinouski MY, Gladyshev VN. Proc. Natl. Acad. Sci. U. S. A. 2007; 104: 13919
- 30 Sarma B. K., Mugesh G.; Org. Biomol. Chem.; 2008, 6, 965
- 31 Gandin V., Khalkar P., Braude J., Fernandes A. P.; Free Radical Biol. Med.; 2018, 127, 80
- 32 Hatfield D. L., Tsuji P. A., Carlson B. A., Gladyshev V. N.; Trends Biochem. Sci.; 2014, 39, 112
- 33 Capper M. J., Wright G. S. A., Barbieri L., Luchinat E., Mercatelli E., McAlary L., Yerbury J. J., O’Neill P. M., Antonyuk S. V., Banci L., Hasnain S. S.; Nat. Commun.; 2018, 9, 1
- 34 Nogara PA, Pereira ME, Oliveira CS, Orian L, da Rocha JB. T. The Long Story of Ebselen: From about One Century of Its Synthesis to Clinical Trials. In Chalcogen Chemistry: Fundamentals and Applications, Chap. 21. Lippolis V, Santi C, Lenardão EJ, Braga AL. Royal Society of Chemistry; London: 2023: 567-591
- 35 Macegoniuk K, Grela E, Palus J, Rudzińska E, Grabowiecka A, Biernat M, Berlicki Ł. J. Med. Chem. 2016; 59: 8125
- 36 Sands KN, Back TG. Tetrahedron 2018; 74: 4959
- 37 Chao MN, Storey M, Li C, Rodríguez MG, Di Salvo F, Szajnman SH, Moreno SN. J, Docampo R, Rodriguez JB. Bioorg. Med. Chem. 2017; 25: 6435
- 38 Chao MN, Lorenzo-Ocampo MV, Szajnman SH, Docampo R, Rodriguez JB. Bioorg. Med. Chem. 2019; 27: 1350
- 39 Astrain-Redin N, Sanmartin C, Sharma AK, Plano D. J. Med. Chem. 2023; 66: 3703
- 40 Ruberte AC, Sanmartin C, Aydillo C, Sharma AK, Plano D. J. Med. Chem. 2020; 63: 1473
- 41 Hou W, Xu H. J. Med. Chem. 2022; 65: 4436
- 42 Shao L, Li Y, Lu J, Jiang X. Org. Chem. Front. 2019; 6: 2999
- 43 Arora A, Singh S, Oswal P, Nautiyal D, Rao GK, Kumar S, Kumar A. Coord. Chem. Rev. 2021; 438: 213885
- 44 Kumar A, Rao GK, Saleem F, Singh AK. Dalton Trans. 2012; 41: 11949
- 45 Santosh G, Shetgaonkar SE, Singh FV. Curr. Org. Synth. 2022; 19: 393
- 46 Rappoport Z. The Chemistry of Organic Selenium and Tellurium Compounds, Vol. 3. In Patai's Chemistry of Functional Groups. Rappoport Z. John Wiley & Sons; Chichester: 2012
- 47 Singh FV, Wirth T. Organoselenium Chemistry. In Encyclopedia of Inorganic and Bioinorganic Chemistry. John Wiley & Sons; Chichester: 2018: 1-32
- 48 Sonego JM, De Diego SI, Szajnman SH, Gallo-Rodriguez C, Rodriguez JB. Chem. Eur. J. 2023; 29: e202300030
- 49 Hori T, Sharpless KB. J. Org. Chem. 1979; 44: 4204
- 50 Liao L, Zhao X. Synlett 2021; 32: 1262
- 51 Logan G, Igunbor C, Chen G.-X, Davis H, Simon A, Salon J, Huang Z. Synlett 2006; 1554
- 52 Freudendahl DM, Santoro S, Shahzad SA, Santi C, Wirth T. Angew. Chem. Int. Ed. 2009; 48: 8409
- 53 Freudendahl DM, Shahzad SA, Wirth T. Eur. J. Org. Chem. 2009; 2009: 1649
- 54 Singh FV, Wirth T. Catal. Sci. Technol. 2019; 9: 1073
- 55 Tang J, Singh T, Li X, Liu L, Zhou T. J. Org. Chem. 2020; 85: 11959
- 56 Neeve EC, Geier SJ, Mkhalid IA. I, Westcott SA, Marder TB. Chem. Rev. 2016; 116: 9091
- 57 Protti S, Fagnoni M. ACS Org. Inorg. Au 2022; 2: 455
- 58 Makhal PN, Nandi A, Kaki VR. ChemistrySelect 2021; 6: 663
- 59 Ma Y, Liu M, Zhou Y, Wu H. Adv. Synth. Catal. 2021; 363: 5386
- 60 Sedighian H, Mamaghani MB, Notash B, Bazgir A. J. Org. Chem. 2021; 86: 2244
- 61 Ortgies S, Breder A. ACS Catal. 2017; 7: 5828
- 62 Liao L, Zhao X. Chem. Lett. 2021; 50: 1104
- 63 Liao L, Zhang H, Zhao X. ACS Catal. 2018; 8: 6745
- 64 Wang XY, Zhang QB, Jin XL, Wu LZ, Liu Q. ChemPhotoChem 2021; 5: 240
- 65 Depken C, Krätzschmar F, Rieger R, Rode K, Breder A. Angew. Chem. Int. Ed. 2018; 57: 2459
- 66 Rode K, Ramadas Narasimhamurthy P, Rieger R, Krätzschmar F, Breder A. Eur. J. Org. Chem. 2021; 2021: 1720
- 67 Poleschner H, Seppelt K. Angew. Chem. Int. Ed. 2013; 52: 12838
- 68 Zheng G, Zhao J, Li Z, Zhang Q, Sun J, Sun H, Zhang Q. Chem. Eur. J. 2016; 22: 3513
- 69 Torii S, Uneyama K, Ono M, Bannou T. J. Am. Chem. Soc. 1981; 103: 4606
- 70 Yan M, Kawamata Y, Baran PS. Chem. Rev. 2017; 117: 13230
- 71 Niyomura O, Cox M, Wirth T. Synlett 2006; 251
- 72 Lenardão EJ, Santi C, Sancineto L. Organoselenium Compounds as Reagents and Catalysts to Develop New Green Protocols. In New Frontiers in Organoselenium Compounds. Springer International; Cham: 2018: 1-97
- 73 Wilken M, Ortgies S, Breder A, Siewert I. ACS Catal. 2018; 8: 10901
- 74 Wang L.-W, Feng Y.-F, Lin H.-M, Tang H.-T, Pan Y.-M. J. Org. Chem. 2021; 86: 16121
- 75 Zhang J.-Q, Shen C, Shuai S, Fang L, Hu D, Wang J, Zhou Y, Ni B, Ren H. Org. Lett. 2022; 24: 9419
- 76 Baidya M, Dutta J, De Sarkar S. Org. Lett. 2023; 25: 3812
- 77 Li B, Zhou Y, Sun Y, Xiong F, Gu L, Ma W, Mei R. Chem. Commun. 2022; 58: 7566
- 78 Tan Z, Xiang F, Xu K, Zeng C. Org. Lett. 2022; 24: 5345
- 79 Gilbert BB, Eey ST. C, Ryabchuk P, Garry O, Denmark SE. Tetrahedron 2019; 75: 4086
- 80 Tao Z, Gilbert BB, Denmark SE. J. Am. Chem. Soc. 2019; 141: 19161
- 81 Muñiz K. Acc. Chem. Res. 2018; 51: 1507
- 82 Röben C, Souto JA, González Y, Lishchynskyi A, Muñiz K. Angew. Chem. Int. Ed. 2011; 50: 9478
- 83 Muñiz K, Barreiro L, Romero RM, Martínez C. J. Am. Chem. Soc. 2017; 139: 4354
- 84 Mumford EM, Hemric BN, Denmark SE. J. Am. Chem. Soc. 2021; 143: 13408
- 85 Lin Y, Hirschi WJ, Kunadia A, Paul A, Ghiviriga I, Abboud KA, Karugu RW, Vetticatt MJ, Hirschi JS, Seidel D. J. Am. Chem. Soc. 2020; 142: 5627
- 86 Yao Q, Kinney EP, Zheng C. Org. Lett. 2004; 6: 2997
- 87 Poleschner H, Heydenreich M, Schilde U. Eur. J. Inorg. Chem. 2000; 2000: 1307
- 88 Wallner OA, Szabó KJ. J. Org. Chem. 2005; 70: 9215
- 89 Solin N, Kjellgren J, Szabó KJ. Angew. Chem. Int. Ed. 2003; 42: 3656
- 90 Solin N, Kjellgren J, Szabó KJ. J. Am. Chem. Soc. 2004; 126: 7026
- 91 Selander N, Szabó KJ. Chem. Rev. 2011; 111: 2048 ; and references therein
- 92 Yao Q, Sheets M. J. Org. Chem. 2006; 71: 5384
- 93 Aydin J, Kumar KS, Eriksson L, Szabó KJ. Adv. Synth. Catal. 2007; 349: 2585
- 94 Selander N, Kipke A, Sebelius S, Szabó KJ. J. Am. Chem. Soc. 2007; 129: 13723
- 95 Petasis NA, Zavialov IA. J. Am. Chem. Soc. 1998; 120: 11798
- 96 Petasis NA, Zavialov IA. J. Am. Chem. Soc. 1997; 119: 445
- 97 Maiti D, Buchwald SL. J. Am. Chem. Soc. 2009; 131: 17423
- 98 Fors BP, Watson DA, Biscoe MR, Buchwald SL. J. Am. Chem. Soc. 2008; 130: 13552
- 99 Sharma C, Srivastava AK, Sharma KN, Joshi RK. Org. Biomol. Chem. 2020; 18: 3599
- 100 Bhatt R, Bhuvanesh N, Sharma KN, Joshi H. Eur. J. Inorg. Chem. 2020; 2020: 532
- 101 Alberico D, Scott ME, Lautens M. Chem. Rev. 2007; 107: 174
- 102 Miyaura N, Suzuki A. Chem. Rev. 1995; 95: 2457
- 103 Joshi H, Sharma KN, Singh VV, Singh P, Singh AK. Dalton Trans. 2013; 42: 2366
- 104 Doyle AG, Jacobsen EN. Chem. Rev. 2007; 107: 5713
- 105 Zhao Y, Beuchat C, Domoto Y, Gajewy J, Wilson A, Mareda J, Sakai N, Matile S. J. Am. Chem. Soc. 2014; 136: 2101
- 106 Breugst M, Von Der Heiden D, Schmauck J. Synthesis 2017; 49: 3224
- 107 Vogel L, Wonner P, Huber SM. Angew. Chem. Int. Ed. 2019; 58: 1880
- 108 Wonner P, Vogel L, Düser M, Gomes L, Kniep F, Mallick B, Werz DB, Huber SM. Angew. Chem. Int. Ed. 2017; 56: 12009
- 109 Wonner P, Steinke T, Vogel L, Huber SM. Chem. Eur. J. 2020; 26: 1258
- 110 Wonner P, Dreger A, Vogel L, Engelage E, Huber SM. Angew. Chem. Int. Ed. 2019; 58: 16923
- 111 Masuda R, Kimura R, Karasaki T, Sase S, Goto K. J. Am. Chem. Soc. 2021; 143: 6345
- 112 Brigelius-Flohé R, Maiorino M. Biochim. Biophys. Acta, Gen. Subj. 2013; 1830: 3289
- 113 Barton DH. R, Wang T.-L. Tetrahedron Lett. 1994; 35: 5149
- 114 De Torres M, Arends IW. C. E, Mayoral JA, Pires E, Jiménez-Osés G. Appl. Catal., A 2012; 425–426: 91
- 115 Santoro S, Santi C, Sabatini M, Testaferri L, Tiecco M. Adv. Synth. Catal. 2008; 350: 2881
- 116 Tripathi SK, Sharma S, Singh HB, Butcher RJ. Org. Biomol. Chem. 2011; 9: 581
- 117 Back TG, Moussa Z. J. Am. Chem. Soc. 2003; 125: 13455
- 118 Press DJ, Mercier EA, Kuzma D, Back TG. J. Org. Chem. 2008; 73: 4252
- 119 Mercier EA, Smith CD, Parvez M, Back TG. J. Org. Chem. 2012; 77: 3508
- 120 McNeil NM. R, McDonnell C, Hambrook M, Back TG. Molecules 2015; 20: 10748
- 121 Sands KN, Tuck TA, Back TG. Chem. Eur. J. 2018; 24: 9714
- 122 McNeil NM. R, Press DJ, Mayder DM, Garnica P, Doyle LM, Back TG. J. Org. Chem. 2016; 81: 7884
- 123 McMillan JD. R, Sands KN, Cooney GS, Gelfand BS, Back TG. Angew. Chem. Int. Ed. 2022; 61: e202213744
- 124 Drake MD, Bright FV, Detty MR. J. Am. Chem. Soc. 2003; 125: 12558
- 125 Tuck TA, Press DJ, LeBlanc B, Sutherland TC, Back TG. J. Org. Chem. 2018; 83: 11917
- 126 Doig AI, Tuck TA, LeBlanc B, Back TG. ACS Omega 2022; 7: 27312
- 127 Crich D, Zou Y. J. Org. Chem. 2005; 70: 3309
- 128 Crich D, Zou Y. Org. Lett. 2004; 6: 775
- 129 ten Brink GJ, Vis JM, Arends IW. C. E, Sheldon RA. J. Org. Chem. 2001; 66: 2429
- 130 Barton DH. R, Brewster AG, Hui RA. H. F, Lester DJ, Ley SV, Back TG. J. Chem. Soc., Chem. Commun. 1978; 952
- 131 Kuwajima I, Shimizu M, Urabe H. J. Org. Chem. 1982; 47: 837
- 132 van der Toorn JC, Kemperman G, Sheldon RA, Arends IW. C. E. J. Org. Chem. 2009; 74: 3085
- 133 Deyle K, Kong XD, Heinis C. Acc. Chem. Res. 2017; 50: 1866
- 134 Tombling BJ, Wang CK, Craik DJ. Angew. Chem. Int. Ed. 2020; 59: 11218
- 135 Henninot A, Collins JC, Nuss JM. J. Med. Chem. 2018; 61: 1382
- 136 Arai K, Noguchi M, Singh BG, Priyadarsini KI, Fujio K, Kubo Y, Takayama K, Ando S, Iwaoka M. FEBS Open Bio 2013; 3: 55
- 137 Sun J, Song C, Ma D, Shen S, Huo S. J. Org. Chem. 2021; 86: 4035
- 138 Yu L, Li H, Zhang X, Ye J, Liu J, Xu Q, Lautens M. Org. Lett. 2014; 16: 1346
- 139 Drake MD, Bateman MA, Detty MR. Organometallics 2003; 22: 4158
- 140 Crich D, Neelamkavil S, Sartillo-Piscil F. Org. Lett. 2000; 2: 4029
- 141 Clive DL. J, Wickens PL, Sgarbi PW. M. J. Org. Chem. 1996; 61: 7426
- 142 Clive DL. J, Sgarbi PW. M, Wickens PL. J. Org. Chem. 1997; 62: 3751
- 143 Ban Y.-L, You L, Feng K.-W, Ma F.-C, Jin X.-L, Liu Q. J. Org. Chem. 2021; 86: 5274
- 144 Liang Z.-P, Yi W, Wang P.-F, Liu G.-Q, Ling Y. J. Org. Chem. 2021; 86: 5292
- 145 Wang Y, Xie Y, Abraham MY, Wei P, Schaefer HF, Schleyer PV. R, Robinson GH. J. Am. Chem. Soc. 2010; 132: 14370
- 146 Wang Y, Hickox HP, Xie Y, Wei P, Blair SA, Johnson MK, Schaefer HF, Robinson GH. J. Am. Chem. Soc. 2017; 139: 6859
- 147 Luedecke KM, Wang Y, Tran PM, Threlkeld HL, Wei P, Xie Y, Schaefer HF, Robinson GH. Organometallics 2020; 39: 4178
- 148 Medeiros IR, Corrêa JR, Barbosa AL. A, Krüger R, Balaguez RA, Lopes TO, de Oliveira HC. B, Alves D, Neto BA. D. J. Org. Chem. 2020; 85: 10561
- 149 Wei W, Zhao X. Org. Lett. 2022; 24: 1780
- 150 Curto JM, Kozlowski MC. J. Am. Chem. Soc. 2015; 137: 18
- 151 Schmink JR, Bellomo A, Berritt S. Aldrichimica Acta 2013; 46: 71
- 152 Wang W, Zhu H, Liu S, Zhao Z, Zhang L, Hao J, Wang Y. J. Am. Chem. Soc. 2019; 141: 9175
- 153 Aroyan CE, Dermenci A, Miller SJ. Tetrahedron 2009; 65: 4069
- 154 Wang W, Zhu H, Feng L, Yu Q, Hao J, Zhu R, Wang Y. J. Am. Chem. Soc. 2020; 142: 3117
- 155 Parnham M, Sies H. Expert Opin. Invest. Drugs 2000; 9: 607
- 156 Bian M, Fan R, Zhao S, Liu W. J. Med. Chem. 2019; 62: 7309
- 157 Sawwan N, Greer A. Chem. Rev. 2007; 107: 3247
- 158 Manjare ST, Kim Y, Churchill DG. Acc. Chem. Res. 2014; 47: 2985
- 159 Waitkins GR, Clark CW. Chem. Rev. 1945; 36: 235
- 160 Roof LC, Kolis JW. Chem. Rev. 1993; 93: 1037
- 161 May SW. Top. Med. Chem. 2016; 17: 87
- 162 Zaragoza F. Angew. Chem. Int. Ed. 2000; 39: 2077