Tierarztl Prax Ausg G Grosstiere Nutztiere 2023; 51(06): 391-398
DOI: 10.1055/a-2199-8963
Kasuistik

Alveoläre Echinokokkose bei Mastschweinen in einem konventionellen Haltungssystem

Alveolar echinococcosis in fattening pigs in a conventional housing system
Ralf Igelbrink
1   Schweinegesundheitsdienst der Tierseuchenkasse Baden-Württemberg, Fellbach
,
Tanja Frey
1   Schweinegesundheitsdienst der Tierseuchenkasse Baden-Württemberg, Fellbach
,
Ingo Schwabe
2   Chemisches und Veterinäruntersuchungsamt Stuttgart, Fellbach
,
Manuel Prot
3   Amt für Veterinärwesen und Lebensmittelüberwachung Rastatt
,
Fenja Reimus
4   Tierärzte Team Tiefenbach GmbH, Crailsheim
,
Rainer Oehme
5   Landesgesundheitsamt Baden-Württemberg, Stuttgart
,
Frederik Löwenstein
6   Bildungs- und Wissenszentrum (LSZ) Boxberg
› Institutsangaben

Zusammenfassung

In einem konventionellen Schweinemastbetrieb in Süddeutschland wurden im Jahresverlauf 2022 bis zu 100 % der Lebern einzelner Schlachtpartien wegen parasitärer Läsionen beanstandet. Eine Intensivierung der Antiparasitenmetaphylaxe mit Fenbendazol zur Bekämpfung von Ascaris suum im Bestand blieb erfolglos. Im Rahmen einer pathomorphologischen Untersuchung von 6 Lebern aus 2 Schlachtpartien konnten oligofokale bindegewebig gekapselte Entzündungen festgestellt werden. Histologisch wurden eine chronische granulomatöse Hepatitis mit massenhafter Beteiligung von eosinophilen Granulozyten sowie zentrale parasitäre Strukturen eines Helminthen nachgewiesen. Die Untersuchung der Leberläsionen mittels PCR ergab den Nachweis von Echinococcus (E.) multilocularis. Zur Ermittlung der Eintragsquelle in den Bestand wurden Kotproben von halbwild lebenden Hauskatzen nahe des Futtermischers und im Stallgang entnommen. Parasitologisch wurden Cestoden-Eier in den Kotproben nachgewiesen. Genomfragmente von E. multilocularis konnten mittels PCR aus dem Kot nicht amplifiziert werden. Im vorliegenden Fall wurden Hauskatzen als wahrscheinlichste Eintragsquelle in den Bestand vermutet. Bekämpfungsmaßnahmen zielten auf die Vermeidung des Parasiteneintrags durch eine Therapie mit Antiparasitika der Hauskatzen ab. Differentialdiagnostisch konnten mittels PCR und bakteriologischer Untersuchung keine anderen in Frage kommenden Erreger nachgewiesen werden.

Abstract

In a conventional fattening farm in southern Germany, up to 100 % of the livers of individual slaughter groups were condemned due to parasitic lesions during 2022. Intensification of antiparasitic metaphylaxis with fenbendazole to control Ascaris suum in the herd was unsuccessful. A pathomorphologic examination of 6 livers from two slaughter groups revealed oligofocal fibrotic inflammation. Histologically, chronic granulomatous hepatitis with massive involvement of eosinophilic granulocytes and central parasitic structures of a helminth were detected. Examination of the liver lesions by PCR revealed evidence of Echinococcus (E.) multilocularis. To determine the source of introduction into the herd, fecal samples were collected from semi-feral domestic cats near the feed mixer and in the corridor of the barn. Parasitologically, cestode eggs were detected in the fecal samples. Genome fragments of E. multilocularis could not be amplified by PCR. In the present case, domestic cats were suspected as the most likely source of entry into the herd. Control measures were aimed at preventing parasite entry by therapy of the domestic cats with antiparasitics. Differentially, no other possible pathogens could be detected by PCR and bacteriological examination.



Publikationsverlauf

Eingereicht: 14. April 2023

Angenommen: 19. September 2023

Artikel online veröffentlicht:
06. Dezember 2023

© 2023. Thieme. All rights reserved.

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • Literatur

  • 1 Deplazes P, Rinaldi L, Alvarez Rojas CA. et al. Chapter Six - Global Distribution of Alveolar and Cystic Echinococcosis. In: Thompson RCA, Deplazes P, Lymbery AJ, Eds. Advances in Parasitology. Vol. 95. Cambridge: Academic Press; 2017: 315-493 10.1016/bs.apar.2016.11.001
  • 2 Romig T, Deplazes P, Jenkins D. et al. Chapter Five – Ecology and Life Cycle Patterns of Echinococcus Species. In: Thompson RCA, Deplazes P, Lymbery AJ, Eds. Advances in Parasitology . Vol. 95. Cambridge: Academic Press; 2017: 213-314 10.1016/bs.apar.2016.11.002
  • 3 Thompson RCA. The Molecular Epidemiology of Echinococcus Infections. Pathogens 2020; 9: 453 10.3390/pathogens9060453
  • 4 Kinkar L, Laurimäe T, Sharbathkori M. et al. New mitogenome and nuclear evidence on the phylogeny and taxonomy of the highly zoonotic tapeworm Echinococcus granulosus sensu stricto. Infect Genet Evol 2017; 52: 52-58 10.1016/j.meegid.2017.04.023
  • 5 Eckert J, Deplazes P. Biological, Epidemiological, and Clinical Aspects of Echinococcosis, a Zoonosis of Increasing Concern. Clin Microbiol Rev 2004; 17: 107-135 10.1128/CMR.17.1.107–135.2004
  • 6 Carmena D, Cardona GA. Echinococcosis in wild carnivorous species: Epidemiology, genotyping diversity, and implications for veterinary public health. Vet Parasitol 2014; 202: 69-94 10.1016/j.vetpar.2014.03.009
  • 7 Higuita NIA, Brunetti E, McCloskey C. Cystic Echinococcosis. J Clin Microbiol 2016; 54: 518-523 10.1128/JCM.02420-15
  • 8 Moro P, Schantz PM. Echinococcosis: a review. Int J Infect Dis 2009; 13: 125-133 10.1016/j.ijid.2008.03.037
  • 9 Craig PS, McManus DP, Lightowlers MW. et al. Prevention and control of cystic echinococcosis. Lancet Infect Dis 2007; 7: 385-394 10.1016/S1473-3099(07)70134-2
  • 10 Kratzer W, Schmidberger J, Hillenbrand A. et al. Alveoläre Echinokokkose: Eine Herausforderung für Diagnostik. Therapie und Klinisches Management. Epid Bull 2019; 41: 423-430 10.25646/6307
  • 11 Conraths FJ, Maksimov P. Epidemiology of Echinococcus multilocularis infections: A review of the present knowledge and of the situation in Germany. Berl Münch Tierärztl Wochenschr 2020; 133 : OA 10.2376/0005-9366-2020-5
  • 12 Gottstein B, Saucy F, Deplazes P. et al. Is high Prevalence of Echinococcus multilocularis in Wild and Domestic Animals Associated with Disease Incidence in Humans?. Emerg Infect Dis 2001; 7: 408-412 10.3201/eid0703.010307
  • 13 Oksanen A, Siles-Lucas M, Karamon J. et al. The geographical distribution and prevalence of Echinococcus multilocularis in animals in the European Union and adjacent countries: a systematic review and meta-analysis. Parasit Vectors 2016; 9: 519 10.1186/s13071-016-1746-4
  • 14 Dyachenko V, Pantchev N, Gawlowska S. et al. Echinococcus multilocularis infections in domestic dogs and cats from Germany and other European countries. Vet Parasit 2008; 157: 244-253 10.1016/j.vetpar.2008.07.030
  • 15 Deplazes P, Hegglin D, Gloor S. et al. Wilderness in the city: the urbanization of Echinococcus multilocularis . Trends Parasit 2004; 20: 77-84 10.1016/j.pt.2003.11.011
  • 16 Hegglin D, Bontadina F, Deplazes P. Human-wildlife interactions and zoonotic transmission of Echinococcus multilocularis . Trends Parasit 2015; 31: 167-173 10.1016/j.pt.2014.12.004
  • 17 Strube C, Neubert A, Springer A. et al. Survey of German pet owners quantifying endoparasitic infection risk and implications for deworming recommendations. Parasit. Vectors 2019; 12: 203 10.1186/s13071-019-3410-2
  • 18 Lass A, Szostakowska B, Myjak P. et al. The first detection of Echinococcus multilocularis DNA in environmental fruit, vegetable, and mushroom samples using nested PCR. Parasitol Res 2015; 114: 4023-4029 10.1007/s00436-015-4630-9
  • 19 Lass A, Szostakowska B, Myjak P. et al. Fresh fruits, vegetables and mushrooms as transmission vehicles for Echinococcus multilocularis in highly endemic areas of Poland: reply to concerns. Parasitol Res 2016; 115: 3637-3642 10.1007/s00436-016-5149-4
  • 20 Brunetti E, Kern P, Vuitton DA. et al. Expert consensus for the diagnosis and treatment of cystic and alveolar echinococcosis in humans. Acta Trop 2010; 114: 1-16 10.1016/j.actatropica.2009.11.001
  • 21 Torgerson PR, Schweiger A, Deplazes P. et al. Alveolar echinococcosis: From a deadly disease to a well-controlled infection. Relative survival and economic analysis in Switzerland over the last 35 years. J Hepatol 2008; 49: 72-77 10.1016/j.jhep.2008.03.023
  • 22 Böttcher D, Bangoura B, Schmäschke R. et al. Diagnostics and epidemiology of alveolar echinococcosis in slaughtered pigs from large-scale husbandries in Germany. Parasitol Res 2013; 112: 629-636 10.1007/s00436-012-3177-2
  • 23 Meyer A, Olias P, Schüpbach G. et al. Combined cross-sectional and case-control study on Echinococcus multilocularis infection in pigs in Switzerland. Vet Parasitol 2020; 277S: 100031 10.1016/j.vpoa.2020.100031
  • 24 Karamon J, Sroka J, Cencek T. The first detection of Echinococcus multilocularis in slaughtered pigs in Poland. Vet Parasitol 2012; 185: 327-329 10.1016/j.vetpar.2011.09.022
  • 25 Bružinskaitė R, Šarkūnas M, Torgerson PR. et al. Echinococcosis in pigs and intestinal infection with Echinococcosis spp. in dogs in southwestern Lithuania. Vet Parasitol 2009; 160: 237-241 10.1016/j.vetpar.2008.11.011
  • 26 Hibiya K, Kasumi Y, Sugawara I. et al. Histopathological classification of systemic Mycobacterium avium complex infections in slaughtered domestic pigs. Comp Immunol Microbiol Infect Dis 2008; 31: 347-366 10.1016/j.cimid.2007.05.001
  • 27 Sethi M, Das T, John JK. et al. Histopathological and bacteriological study of multiple hepatic abscesses in a crossbred piglet. Int J Livest Res 2017; 7: 280-283 10.5455/ijlr.20170524113303
  • 28 García NV, Leiva GAA, Jola NJR. et al Multiple abscesses in a pig caused by Trueperella pyogenes (Arcanobacterium pyogenes): Case report. Rev Mex Cienc Pecu 2015; 6: 97-98 ISSN 2448-6698
  • 29 Takizawa K, Kusumoto M, Matsuura T. et al. Liver abscess associated with Streptococcus suis serotype 4 in a Duroc boar. Jpn Agric Res Q 2018; 52: 347-352 10.6090/jarq.52.347
  • 30 Ohba T, Shibahara T, Kobayashi H. et al. Multifocal granulomatous hepatitis caused by Actinobacillus pleuropneumoniae serotype 2 in slaughter pigs. J Comp Pathol 2008; 139: 61-66 10.10.16/j.jcpa.2008.04.003
  • 31 Prodanov-Radulović J, Došen R, Pušić I. et al. Emergence of pseudorabies virus (Morbus Aujeszky) infection at large swine farms in Ap Vojvodina (Serbia). Contemp agric 2015; 64: 105-111 ISSN: 0350-1205
  • 32 Stephenson LS, Pond WG, Nesheim MC. et al. Ascaris suum: nutrient absorption, growth, and intestinal pathology in young pigs experimentally infected with 15-day-old larvae. Exp Parasitol 1980; 49: 25 10.1016/0014-4894(80)90051-X
  • 33 Capucchio MT, Catalano D, Di Marco V. et al. Natural trematode infestation in feral Nebrodi Black pigs. Vet Parasitol 2009; 159: 37-42 10.1016/j.vetpar.2008.10.017
  • 34 Vuitton DA, Wang Q, Zhou H. et al. A historical view of alveolar echinococcosis, 160 years after the discovery of the first case in humans: part 1. What have we learnt on the distribution of the disease and on its parasitic agent?. Chin Med J 2011; 124: 2943-2953 10.3760/cma.j.issn.0366-6999.2011.18.027
  • 35 Kern P, Bardonnet K, Renner E. et al. European echinococcosis registry: Human alveolar echinococcosis, Europe, 1982-2000. Emerg Infect Dis 2003; 9: 343-349 10.3201/eid0903.020341
  • 36 Conraths FJ, Deplazes P. Echinococcus multilocularis: Epidemiology, surveillance and state-of-the-art diagnostics from a veterinary public health perspective. Vet Parasitol 2015; 213: 149-161 10.1016/j.vetpar.2015.07.027
  • 37 Deplazes P, Grimm F, Sydler T. et al. Experimental alveolar echinococcosis in pigs, lesion development and serological follow up. Vet Parasitol 2005; 130: 213-222 10.1016/j.vetpar.2005.03.034
  • 38 Umhang G, Forin-Wiart M-A, Hormaz V. et al. Echinococcus multilocularis detection in the intestines and feces of free-ranging domestic cats (Felis s. catus) and European wild cats (Felis s. silvestris) from northeastern France. Vet Parasitol 2015; 214: 75-79 10.1016/j.vetpar.2015.06.006
  • 39 Umhang G, Bastien M, Bastid V. et al. High variability in the number of E. multilocularis eggs in cat feces collected in the field. Parasitol Int 2022; 89: 102583 10.1016/j.parint.2022.102583
  • 40 Thompson RCA, Kapel CMO, Hobbs RP. et al. Comparative development of Echinococcus multilocularis in its definitive hosts. Parasitol 2006; 132: 709-716 10.1017/S0031182005009625
  • 41 Kapel CMO, Torgerson PR, Thompson RCA. et al. Reproductive potential of Echinococcus multilocularis in experimentally infected foxes, dogs, raccoon dogs and cats. Int J Parasitol 2006; 36: 79-86 10.1016/j.ijpara.2005.08.012
  • 42 Thompson RCA, Deplazes P, Eckert J. Observations on the development of Echinococcus multilocularis in cats. J Parasitol 2003; 89: 1086-1088 10.1645/GE-3150RN
  • 43 Veit P, Bilger B, Schad V. et al. Influence of environmental factors on the infectivity of Echinococcus multilocularis eggs. Parasitology 1995; 110: 79-86 10.1017/S0031182000081075
  • 44 Gemmell MA, Roberts MG, Beard TC. et al. Chapter 5 – Epidemiology. In: Eckart MJ, Gemmell MA, Meslin F-X, Pawłowski ZS Eds. WHO/OIE Manual on Echinococcosis in Humans and Animals: a Public Health Problem of Global Concern. Paris; WHO/OIE. 2001
  • 45 Da Silva AM, Bastien M, Umhang G. et al. Soil contamination by Echinococcus multilocularis in rural and urban vegetable gardens in relation to fox, cat and dog faecel deposits. Parasite 2021; 28: 74 10.1051/parasite/2021073
  • 46 Deplazes P, Gottstein B. A monoclonal antibody against Echinococcus multilocularis Em2 antigen. Parasitology 1991; 103: 41-49 10.1017/S0031182000059278
  • 47 Schmidberger J, Steinbach J, Schlingeloff P. et al. Surgery versus conservative drug therapy in alveolar echinococcosis patients in Germany – A health-related quality of life comparison. Food Waterborne Parasitol 2019; 16: e00057 10.1016/j.fawpar.2019e00057
  • 48 Hegglin D, Deplazes P. Control of Echinococcus multilocularis: Strategies, feasibility and cost-benefit analyses. Int J Parasitol 2013; 43: 327-337 10.1016/j.ijpara.2012.11.013