CC BY-NC-ND 4.0 · Geburtshilfe Frauenheilkd 2024; 84(01): 48-58
DOI: 10.1055/a-2202-5363
GebFra Science
Review

Applikation antenataler Kortikosteroide: optimales Timing

Article in several languages: English | deutsch
Richard Berger
1   Klinik für Gynäkologie und Geburtshilfe, Marienhaus Klinikum St. Elisabeth, Akademisches Lehrkrankenhaus der Universitäten Mainz und Maastricht, Neuwied, Germany (Ringgold ID: RIN39639)
,
Patrick Stelzl
2   Universitätsklinik für Gynäkologie, Geburtshilfe und gynäkologische Endokrinologie, Kepler Universitätsklinikum, Johannes Kepler Universität Linz, Linz, Austria (Ringgold ID: RIN31197)
,
Holger Maul
3   Frauenkliniken, Asklepios Kliniken Barmbek, Wandsbek und Nord-Heidberg, Hamburg, Germany (Ringgold ID: RIN9161)
› Author Affiliations

Zusammenfassung

Die Effektivität antenataler Kortikosteroide (ACS), das Respiratory Distress Syndrome (RDS) signifikant zu senken, hängt entscheidend vom Timing ab. Dies gelingt bei einer Entbindung > 24 Stunden bis 7 Tage nach Applikation, nach dieser Zeit scheinen eher die Nebenwirkungen zu überwiegen. Darüber hinaus werden bei Kindern, die nach ACS-Applikation reif geboren werden, vermehrt mentale Beeinträchtigungen und Verhaltensstörungen beobachtet. Das optimale Timing der ACS-Gabe hängt entscheidend von der jeweiligen Indikation ab und gelingt bisher in lediglich 25–40% der Fälle. Die ACS-Applikation ist immer indiziert bei PPROM, bei schwerer, früher Präeklampsie, bei fetaler IUGR mit Null- oder Reverse-Flow in der A. umbilicalis, bei einer blutenden Placenta praevia und bei Patientinnen mit vorzeitiger Wehentätigkeit und einer Zervixlänge < 15 mm. Das Risiko von Frauen mit einer asymptomatischen Zervixinsuffizienz, innerhalb von 7 Tagen zu gebären, ist sehr gering. Hier sollte auf die ACS-Gabe auch bei einer Zervixlänge von unter 15 mm verzichtet werden, wenn der Muttermund geschlossen ist und keine weiteren Risikofaktoren für eine Frühgeburt vorliegen. Die Entwicklung weiterer diagnostischer Methoden mit verbesserter Prädiktion für eine Frühgeburt ist dringend notwendig, um das Timing der ACS-Gabe in diesem Patientenkollektiv zu optimieren. Zurückhaltung bei der ACS-Gabe ist ebenso angezeigt bei Frauen mit vorzeitiger Wehentätigkeit und einer Zervixlänge ≥ 15 mm. Hier gilt es, in weiteren Studien mittels Amniozentese das Patientenkollektiv zu identifizieren, bei dem eine intraamniale, mikrobielle Infektion/Inflammation (MIAC/IAI) vorliegt, und Schwellenwerte für die Indikation zur Entbindung zu definieren. Die ACS-Gabe ist keine Notfallmaßnahme, in der Regel auch nicht vor Verlegung in ein Perinatalzentrum. Deshalb sollte, wenn immer möglich, die Indikation zur ACS-Applikation von einem/einer in der Perinatologie sehr erfahrenen Kollegen/Kollegin gestellt werden.



Publication History

Received: 31 July 2023

Accepted after revision: 31 October 2023

Article published online:
03 January 2024

© 2024. The Author(s). This is an open access article published by Thieme under the terms of the Creative Commons Attribution-NonDerivative-NonCommercial-License, permitting copying and reproduction so long as the original work is given appropriate credit. Contents may not be used for commercial purposes, or adapted, remixed, transformed or built upon. (https://creativecommons.org/licenses/by-nc-nd/4.0/).

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References/Literatur

  • 1 Roberts D, Brown J, Medley N. et al. Antenatal corticosteroids for accelerating fetal lung maturation for women at risk of preterm birth. Cochrane Database Syst Rev 2017; (03) CD004454
  • 2 Berger R, Kyvernitakis I, Maul H. Administration of Antenatal Corticosteroids: Current State of Knowledge. Geburtshilfe Frauenheilkd 2022; 82: 287-296
  • 3 Biedermann R, Schleussner E, Lauten A. et al. Inadequate Timing Limits the Benefit of Antenatal Corticosteroids on Neonatal Outcome: Retrospective Analysis of a High-Risk Cohort of Preterm Infants in a Tertiary Center in Germany. Geburtshilfe Frauenheilkd 2022; 82: 317-325
  • 4 Roberts D, Dalziel S. Antenatal corticosteroids for accelerating fetal lung maturation for women at risk of preterm birth. Cochrane Database Syst Rev 2006; (03) CD004454
  • 5 Fortmann I, Mertens L, Boeckel H. et al. A Timely Administration of Antenatal Steroids Is Highly Protective Against Intraventricular Hemorrhage: An Observational Multicenter Cohort Study of Very Low Birth Weight Infants. Front Pediatr 2022; 10: 721355
  • 6 Liebowitz M, Clyman RI. Antenatal Betamethasone: A Prolonged Time Interval from Administration to Delivery Is Associated with an Increased Incidence of Severe Intraventricular Hemorrhage in Infants Born before 28 Weeks Gestation. J Pediatr 2016; 177: 114-120.e1
  • 7 Räikkönen K, Gissler M, Kajantie E. Associations Between Maternal Antenatal Corticosteroid Treatment and Mental and Behavioral Disorders in Children. JAMA 2020; 323: 1924-1933
  • 8 Räikkönen K, Gissler M, Tapiainen T. et al. Associations Between Maternal Antenatal Corticosteroid Treatment and Psychological Developmental and Neurosensory Disorders in Children. JAMA Netw Open 2022; 5: e2228518
  • 9 Tao S, Du J, Chi X. et al. Associations between antenatal corticosteroid exposure and neurodevelopment in infants. Am J Obstet Gynecol 2022; 227: 759.e1-759.e15
  • 10 Levin HI, Ananth CV, Benjamin-Boamah C. et al. Clinical indication and timing of antenatal corticosteroid administration at a single centre. BJOG 2016; 123: 409-414
  • 11 Razaz N, Skoll A, Fahey J. et al. Trends in optimal, suboptimal, and questionably appropriate receipt of antenatal corticosteroid prophylaxis. Obstet Gynecol 2015; 125: 288-296
  • 12 Makhija NK, Tronnes AA, Dunlap BS. et al. Antenatal corticosteroid timing: accuracy after the introduction of a rescue course protocol. Am J Obstet Gynecol 2016; 214: 120.e1-120.e6
  • 13 Mercer BM, Miodovnik M, Thurnau GR. et al. Antibiotic therapy for reduction of infant morbidity after preterm premature rupture of the membranes. A randomized controlled trial. National Institute of Child Health and Human Development Maternal-Fetal Medicine Units Network. JAMA 1997; 278: 989-995
  • 14 Melamed N, Hadar E, Ben-Haroush A. et al. Factors affecting the duration of the latency period in preterm premature rupture of membranes. J Matern Fetal Neonatal Med 2009; 22: 1051-1056
  • 15 Pergialiotis V, Bellos I, Fanaki M. et al. The impact of residual oligohydramnios following preterm premature rupture of membranes on adverse pregnancy outcomes: a meta-analysis. Am J Obstet Gynecol 2020; 222: 628-630
  • 16 Borgida AF, Mills AA, Feldman DM. et al. Outcome of pregnancies complicated by ruptured membranes after genetic amniocentesis. Am J Obstet Gynecol 2000; 183: 937-939
  • 17 Berger R, Abele H, Bahlmann F. et al. Prevention and Therapy of Preterm Birth. Guideline of the DGGG, OEGGG and SGGG (S2k Level, AWMF Registry Number 015/025, September 2022) – Part 2 with Recommendations on the Tertiary Prevention of Preterm Birth and on the Management of Preterm Premature Rupture of Membranes. Geburtshilfe Frauenheilkd 2023; 83: 569-601
  • 18 Porreco R, Garite TJ, Combs CA. et al. Booster course of antenatal corticosteroids after preterm prelabor rupture of membranes: a double-blind randomized trial. Am J Obstet Gynecol MFM 2023; 5: 100896
  • 19 Brookfield KF, El-Sayed YY, Chao L. et al. Antenatal corticosteroids for preterm premature rupture of membranes: single or repeat course?. Am J Perinatol 2015; 32: 537-544
  • 20 Gyamfi-Bannerman C, Son M. Preterm premature rupture of membranes and the rate of neonatal sepsis after two courses of antenatal corticosteroids. Obstet Gynecol 2014; 124: 999-1003
  • 21 Webster JC, Oakley RH, Jewell CM. et al. Proinflammatory cytokines regulate human glucocorticoid receptor gene expression and lead to the accumulation of the dominant negative beta isoform: a mechanism for the generation of glucocorticoid resistance. Proc Natl Acad Sci U S A 2001; 98: 6865-6870
  • 22 Marketon JI, Sternberg EM. The glucocorticoid receptor: a revisited target for toxins. Toxins (Basel) 2010; 2: 1357-1380
  • 23 Garite TJ, Kurtzman J, Maurel K. et al. Impact of a ‘rescue course’ of antenatal corticosteroids: a multicenter randomized placebo-controlled trial. Am J Obstet Gynecol 2009; 200: 248.e1-248.e9
  • 24 Baghlaf H, Snelgrove JW, Li Q. et al. One vs 2 courses of antenatal corticosteroids in pregnancies at risk of preterm birth: a secondary analysis of the MACS trial. Am J Obstet Gynecol MFM 2023; 5: 101002
  • 25 Peltoniemi OM, Kari MA, Tammela O. et al. Randomized trial of a single repeat dose of prenatal betamethasone treatment in imminent preterm birth. Pediatrics 2007; 119: 290-298
  • 26 Verlohren S, Brennecke SP, Galindo A. et al. Clinical interpretation and implementation of the sFlt-1/PlGF ratio in the prediction, diagnosis and management of preeclampsia. Pregnancy Hypertens 2022; 27: 42-50
  • 27 Sovio U, Gaccioli F, Cook E. et al. Prediction of Preeclampsia Using the Soluble fms-Like Tyrosine Kinase 1 to Placental Growth Factor Ratio: A Prospective Cohort Study of Unselected Nulliparous Women. Hypertension 2017; 69: 731-738
  • 28 Dragan I, Wright D, Fiolna M. et al. Development of pre-eclampsia within 4 weeks of sFlt-1/PlGF ratio > 38: comparison of performance at 31–34 vs 35–37 weeks’ gestation. Ultrasound Obstet Gynecol 2017; 49: 209-212
  • 29 Cerdeira AS, O’Sullivan J, Ohuma EO. et al. Performance of soluble fms-like tyrosine kinase-1-to-placental growth factor ratio of ≥ 85 for ruling in preeclampsia within 4 weeks. Am J Obstet Gynecol 2021; 224: 322-323
  • 30 Rana S, Salahuddin S, Mueller A. et al. Angiogenic biomarkers in triage and risk for preeclampsia with severe features. Pregnancy Hypertens 2018; 13: 100-106
  • 31 Villalaín C, Herraiz I, Valle L. et al. Maternal and Perinatal Outcomes Associated With Extremely High Values for the sFlt-1 (Soluble fms-Like Tyrosine Kinase 1)/PlGF (Placental Growth Factor) Ratio. J Am Heart Assoc 2020; 9: e015548
  • 32 Zeisler H, Llurba E, Chantraine FJ. et al. Soluble fms-like tyrosine kinase-1 to placental growth factor ratio: ruling out pre-eclampsia for up to 4 weeks and value of retesting. Ultrasound Obstet Gynecol 2019; 53: 367-375
  • 33 Cluver CA, Hannan NJ, van Papendorp E. et al. Esomeprazole to treat women with preterm preeclampsia: a randomized placebo controlled trial. Am J Obstet Gynecol 2018; 219: 388.e1-388.e17
  • 34 Haddad B, Deis S, Goffinet F. et al. Maternal and perinatal outcomes during expectant management of 239 severe preeclamptic women between 24 and 33 weeks’ gestation. Am J Obstet Gynecol 2004; 190: 1590-1595
  • 35 Chammas MF, Nguyen TM, Li MA. et al. Expectant management of severe preterm preeclampsia: is intrauterine growth restriction an indication for immediate delivery?. Am J Obstet Gynecol 2000; 183: 853-858
  • 36 Sibai BM, Mercer BM, Schiff E. et al. Aggressive versus expectant management of severe preeclampsia at 28 to 32 weeks’ gestation: a randomized controlled trial. Am J Obstet Gynecol 1994; 171: 818-822
  • 37 Odendaal HJ, Pattinson RC, Bam R. et al. Aggressive or expectant management for patients with severe preeclampsia between 28–34 weeks’ gestation: a randomized controlled trial. Obstet Gynecol 1990; 76: 1070-1075
  • 38 von Dadelszen P, Payne B, Li J. et al. Prediction of adverse maternal outcomes in pre-eclampsia: development and validation of the fullPIERS model. Lancet 2011; 377: 219-227
  • 39 Thornton JG, Hornbuckle J, Vail A. et al. Infant wellbeing at 2 years of age in the Growth Restriction Intervention Trial (GRIT): multicentred randomised controlled trial. Lancet 2004; 364: 513-520
  • 40 Lees CC, Marlow N, van Wassenaer-Leemhuis A. et al. 2 year neurodevelopmental and intermediate perinatal outcomes in infants with very preterm fetal growth restriction (TRUFFLE): a randomised trial. Lancet 2015; 385: 2162-2172
  • 41 Melamed N, Baschat A, Yinon Y. et al. FIGO (international Federation of Gynecology and obstetrics) initiative on fetal growth: best practice advice for screening, diagnosis, and management of fetal growth restriction. Int J Gynaecol Obstet 2021; 152 (Suppl. 01) 3-57
  • 42 Cahill LS, Whitehead CL, Hobson SR. et al. Effect of maternal betamethasone administration on feto-placental vascular resistance in the mouse†. Biol Reprod 2019; 101: 823-831
  • 43 Schaap AH, Wolf H, Bruinse HW. et al. Effects of antenatal corticosteroid administration on mortality and long-term morbidity in early preterm, growth-restricted infants. Obstet Gynecol 2001; 97: 954-960
  • 44 Magann EF, Haram K, Ounpraseuth S. et al. Use of antenatal corticosteroids in special circumstances: a comprehensive review. Acta Obstet Gynecol Scand 2017; 96: 395-409
  • 45 Familiari A, Napolitano R, Visser GHA. et al. Antenatal corticosteroids and perinatal outcome in late fetal growth restriction: analysis of prospective cohort. Ultrasound Obstet Gynecol 2023; 61: 191-197
  • 46 Esplin MS, Elovitz MA, Iams JD. et al. Predictive Accuracy of Serial Transvaginal Cervical Lengths and Quantitative Vaginal Fetal Fibronectin Levels for Spontaneous Preterm Birth Among Nulliparous Women. JAMA 2017; 317: 1047-1056
  • 47 Tsakiridis I, Dagklis T, Sotiriadis A. et al. Third-trimester cervical length assessment for the prediction of spontaneous late preterm birth. J Matern Fetal Neonatal Med 2023; 36: 2201368
  • 48 Gulersen M, Divon MY, Krantz D. et al. The risk of spontaneous preterm birth in asymptomatic women with a short cervix (≤ 25 mm) at 23–28 weeks’ gestation. Am J Obstet Gynecol MFM 2020; 2: 100059
  • 49 Richards DS, Wong LF, Esplin MS. et al. Anticipatory Corticosteroid Administration to Asymptomatic Women with a Short Cervix. Am J Perinatol 2018; 35: 397-404
  • 50 Zork N, Gulersen M, Mardy A. et al. The utility of fetal fibronectin in asymptomatic singleton and twin pregnancies with a cervical length ≤ 10 mm. J Matern Fetal Neonatal Med 2020; 33: 2865-2871
  • 51 Magro-Malosso E, Seravalli V, Cozzolino M. et al. Prediction of preterm delivery by fetal fibronectin in symptomatic and asymptomatic women with cervical length ≤ 20 mm. J Matern Fetal Neonatal Med 2017; 30: 294-297
  • 52 Kyvernitakis I, Lauer P, Malan M. et al. A novel aspiration technique to assess cervical remodelling in patients with or without cervical shortening: Sequence of first changes, definition of cut-off values and impact of cervical pessary, stratified for cervical length. PLoS One 2023; 18: e0283944
  • 53 Gudicha DW, Romero R, Gomez-Lopez N. et al. The amniotic fluid proteome predicts imminent preterm delivery in asymptomatic women with a short cervix. Sci Rep 2022; 12: 11781
  • 54 American College of Obstetricians and Gynecologists’ Committee on Practice Bulletins—Obstetrics. Practice Bulletin No. 171: Management of Preterm Labor. Obstet Gynecol 2016; 128: e155-e164
  • 55 Nijman TA, van Vliet EO, Koullali B. et al. Antepartum and intrapartum interventions to prevent preterm birth and its sequelae. Semin Fetal Neonatal Med 2016; 21: 121-128
  • 56 van Baaren GJ, Vis JY, Wilms FF. et al. Predictive value of cervical length measurement and fibronectin testing in threatened preterm labor. Obstet Gynecol 2014; 123: 1185-1192
  • 57 Palacio M, Cobo T, Bosch J. et al. Cervical length and gestational age at admission as predictors of intra-amniotic inflammation in preterm labor with intact membranes. Ultrasound Obstet Gynecol 2009; 34: 441-447
  • 58 Combs CA, Gravett M, Garite TJ. et al. Amniotic fluid infection, inflammation, and colonization in preterm labor with intact membranes. Am J Obstet Gynecol 2014; 210: 125.e1-125.e15
  • 59 Romero R, Miranda J, Chaiworapongsa T. et al. Prevalence and clinical significance of sterile intra-amniotic inflammation in patients with preterm labor and intact membranes. Am J Reprod Immunol 2014; 72: 458-474
  • 60 Cobo T, Aldecoa V, Figueras F. et al. Development and validation of a multivariable prediction model of spontaneous preterm delivery and microbial invasion of the amniotic cavity in women with preterm labor. Am J Obstet Gynecol 2020; 223: 421.e1-421.e14
  • 61 Cobo T, Aldecoa V, Bartha JL. et al. Assessment of an intervention to optimise antenatal management of women admitted with preterm labour and intact membranes using amniocentesis-based predictive risk models: study protocol for a randomised controlled trial (OPTIM-PTL Study). BMJ Open 2021; 11: e054711
  • 62 Yoon BH, Romero R, Park JY. et al. Antibiotic administration can eradicate intra-amniotic infection or intra-amniotic inflammation in a subset of patients with preterm labor and intact membranes. Am J Obstet Gynecol 2019; 221: 142.e1-142.e22
  • 63 IQTIG. Bundesauswertung zum Erfassungsjahr 2021 Geburtshilfe. Accessed December 01, 2023 at: https://iqtig.org/downloads/auswertung/2021/pmgebh/DeQS_PM-GEBH_2021_BUAW_V01_2022-06-30.pdf
  • 64 Hamm RF, Combs CA, Aghajanian P. et al. Society for Maternal-Fetal Medicine Special Statement: Quality metrics for optimal timing of antenatal corticosteroid administration. Am J Obstet Gynecol 2022; 226: B2-B10
  • 65 Carlo WA, McDonald SA, Fanaroff AA. et al. Association of antenatal corticosteroids with mortality and neurodevelopmental outcomes among infants born at 22 to 25 weeks’ gestation. JAMA 2011; 306: 2348-2358
  • 66 Travers CP, Clark RH, Spitzer AR. et al. Exposure to any antenatal corticosteroids and outcomes in preterm infants by gestational age: prospective cohort study. BMJ 2017; 356: j1039
  • 67 Norman M, Piedvache A, Borch K. et al. Association of Short Antenatal Corticosteroid Administration-to-Birth Intervals With Survival and Morbidity Among Very Preterm Infants: Results From the EPICE Cohort. JAMA Pediatr 2017; 171: 678-686