Synlett 2024; 35(06): 635-648
DOI: 10.1055/a-2202-8808
account
Special Issue to Celebrate the Centenary Year of Prof. Har Gobind Khorana

Synthesis of Modified C-Nucleosides of Therapeutic Significant: A Succinct Account

Nandagopal Hudait
a   Bose Institute, Department of Chemical Sciences, Unified Academic Campus, EN 80, Sector V, Bidhan Nagar, Kolkata, 700091, West Bengal, India
b   West Bengal State University, Department of Chemistry, Berunanpukuria, North 24 Paraganas, Kolkata, 700126, West Bengal, India
,
Norein Sakander
c   Natural Products and Medicinal Chemistry Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu, 180001, India
d   Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
,
Sanchari Kundu
a   Bose Institute, Department of Chemical Sciences, Unified Academic Campus, EN 80, Sector V, Bidhan Nagar, Kolkata, 700091, West Bengal, India
,
Bisma Rasool
c   Natural Products and Medicinal Chemistry Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu, 180001, India
d   Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
,
Jhimli Sengupta
b   West Bengal State University, Department of Chemistry, Berunanpukuria, North 24 Paraganas, Kolkata, 700126, West Bengal, India
,
Debaraj Mukherjee
a   Bose Institute, Department of Chemical Sciences, Unified Academic Campus, EN 80, Sector V, Bidhan Nagar, Kolkata, 700091, West Bengal, India
d   Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
› Author Affiliations
The authors are thankful to the Science and Engineering Research Board, Department of Science and Technology (SERB-DST), India (CRG/2021/004142) for funding.


Abstract

Since their discovery in the 1950s, C-nucleosides have piqued the interest of both biologists and medicinal chemists. In this regard, C-nucleosides and their synthetic analogues have resulted in promising leads in drug design. Concurrently, advances in chemical syntheses have contributed to structural diversity and drug discovery efforts. Convergent and modular approaches to synthesis have gained much attention in this regard. Among them nucleophilic substitution at C-1 has seen wide applications, providing flexibility in synthesis, good yields, the ability to maneuver stereochemistry as well as to incorporate structural modifications. In this account, we briefly discuss the modular synthesis of C-nucleosides with a focus on mechanistic studies and sugar modifications that have resulted in potent lead molecules. Meanwhile, various FDA-approved C-nucleoside analogues have been reported previously for their antiviral and/or anticancer potential, with examples being pyrazomycin, remdesivir, pseudouridine, and pseudouridimycin.

1 Introduction and Motivation

2 Strategies for the Synthesis of C-Nucleosides

3 Biologically Active C-Nucleosides

4 Mechanistic Analysis of C-Nucleoside Formation

5 Synthesis and Manipulation of Medicinally Important C-Nucleoside Analogues

6 C-Nucleosides: Synthesis of C–C Bonds with a C-1′ Base

7 Conclusion



Publication History

Received: 31 July 2023

Accepted after revision: 02 November 2023

Accepted Manuscript online:
02 November 2023

Article published online:
20 December 2023

© 2023. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

  • 1 Dong Y, Sun F, Ping Z, Ouyang Q, Qian L. Nat. Sci. Rev. 2020; 7: 1092
  • 2 Shrivastava S, Badlani R. Int. J. Electr. Energy 2014; 2: 119
  • 3 Wang G, Wan J, Hu Y, Wu X, Prhavc M, Dyatkina N, Rajwanshi VK, Smith DB, Jekle A, Kinkade A, Symons JA, Jin Z, Deval J, Zhang Q, Tam Y, Chanda S, Blatt L, Beigelman L. J. Med. Chem. 2016; 59: 4611
  • 4 Cosson F, Faroux A, Baltaze J.-P, Farjon J, Guillot R, Uziel J, Lubin-Germain N. Beilstein J. Org. Chem. 2017; 13: 755
  • 5 Draffan AG, Frey B, Pool B, Gannon C, Tyndall EM, Lilly M, Francom P, Hufton R, Halim R, Jahangiri S, Bond S, Nguyen VT, Jeynes TP, Wirth V, Luttick A, Tilmanis D, Thomas JD, Pryor M, Porter K, Morton CJ, Lin B, Duan J, Kukolj G, Simoneau B, McKercher G, Lagace L, Amad M, Bethell RC, Tucker SP. ACS Med. Chem. Lett. 2014; 5: 679
    • 6a Rasool F, Mukherjee D. Org. Lett. 2017; 19: 4936
    • 6b Sakander N, Ahmed A, Zargar IA, Mukherjee D. J. Org. Chem. 2023; 88: 8300
  • 7 Singh AK, Kushwaha PP, Prajapati KS, Shuaib M, Gupta S, Kumar S. Comput. Biol. Med. 2021; 130: 104185
  • 8 Bililign T, Griffith BR, Thorson JS. Nat. Prod. Rep. 2005; 22: 742
  • 9 Cohn WE, Volkin E. Nature 1951; 167: 483
  • 10 Davis FF, Allen FW. J. Biol. Chem. 1957; 227: 907
  • 11 Cohn WE. Biochim. Biophys. Acta 1959; 32: 569
  • 12 Cohn WE. J. Biol. Chem. 1960; 235: 1488
  • 13 Yu CT, Allen FW. Biochim. Biophys. Acta 1959; 32: 393
  • 14 Scannell JP, Crestfield AM, Allen FW. Biochim. Biophys. Acta 1959; 32: 406
  • 15 Johnson L, Söll D. Proc. Natl. Acad. Sci. U. S. A. 1970; 67: 943
  • 16 Antonioli L, Yegutkin GG, Pacher P, Blandizzi C, Hasko G. Trends Cancer 2016; 2: 95
  • 17 Voena C, Chiarle R. Discovery Med. 2016; 21: 125
  • 18 Carvajal RD, Yang J, Asmar R. Ther. Clin. Risk Manage. 2016; 12: 313
  • 19 Siegel R, Ma J, Zou Z, Jemal A. CA Cancer J. Clin. 2014; 64: 9
  • 20 Cronstein BN, Kamen BA. J. Pediatr. Hematol. Oncol. 2007; 29: 805
  • 21 Wenzel T, Nair V. Bioorg. Med. Chem. Lett. 1997; 7: 3195
  • 22 Yang Z, Zhang H, Min J, Ma L, Zhang L. Helv. Chim. Acta 1999; 82: 2037
  • 23 Nawrocki ST, Griffin P, Kelly KR, Carew JS. Expert Opin. Invest. Drugs 2012; 21: 1563
  • 24 Jung ME, Toyota A. Tetrahedron Lett. 2000; 41: 3577
  • 25 Hudait N, Karmakar A, Basu A, Kar B, Bhuyan S, Chhetri K, Kundu S, Gopal Roy B, Sengupta J. ChemistrySelect 2023; 8: e202204311
  • 26 Rasool B, Zargar IA, Hussain N, Mukherjee D. Chem. Commun. 2023; 59: 9090
  • 27 Romeo R, Carnovale C, Rescifina A, Chiacchio MA. In Chemical Synthesis of Nucleoside Analogues . Merino P. John Wiley & Sons; Hoboken: 2013: 163-208
  • 28 Jin DZ, Kwon SH, Moon HR, Gunaga P, Kim HO, Kim DK, Chun MW, Jeong LS. Bioorg. Med. Chem. 2004; 12: 1101
  • 29 Shen GH, Kang L, Kim E, Lee W, Hong JH. B. Bull. Korean Chem. Soc. 2012; 33: 2574
  • 30 Cho A, Saunders OL, Butler T, Zhang L, Xu J, Vela JE, Feng JY, Ray AS, Kim CU. Bioorg. Med. Chem. Lett. 2012; 22: 2705
  • 31 Kaysen J, Spriggs D, Kufe D. Cancer Res. 1986; 46: 4534
  • 32 Perez MA, Cerqueira NM, Fernandes PA, Ramos MJ. Curr. Med. Chem. 2010; 17: 2854
  • 33 Wang W, Zhao L, Wei X, Wang L, Liu S, Yang Y, Wang F, Sun G, Zhang J, Ma Y, Zhao Y. Sci. Rep. 2016; 6: 27641
  • 34 Chou KM, Kukhanova M, Cheng YC. J. Biol. Chem. 2000; 275: 31009
  • 35 Brown ED, Wright GD. Nature 2016; 529: 336
  • 36 Marston HD, Dixon DM, Knisely JM, Palmore TN, Fauci AS. J. Am. Med. Assoc. 2016; 316: 1193
  • 37 Van Rompay AR, Johansson M, Karlsson A. Pharmacol. Ther. 2000; 87: 189
  • 38 Hocek M. Chem. Rev. 2009; 109: 6729
  • 39 Wang Z. 652. Vorbruggen Glycosylation. In Comprehensive Organic Name Reactions and Reagents. John Wiley & Sons; Hoboken: 2010. 2915
  • 40 Henschke JP, Zhang X, Huang X, Mei L, Chu G, Hu K, Wang Q, Zhu G, Wu M, Kuo C, Chen Y. Org. Process Res. Dev. 2013; 17: 1419
  • 41 Veerareddygari GR, Singh SK, Mueller EG. J. Am. Chem. Soc. 2016; 138: 7852
  • 42 Gu XR, Liu YQ, Santi DV. Proc. Natl. Acad. Sci. U. S. A. 1999; 96: 14270
  • 43 Huang LX, Pookanjanatavip M, Gu XG, Santi DV. Biochemistry 1998; 37: 344
  • 44 Postema MH. D. C-Glycoside Synthesis . CRC Press; Boca Raton: 1995
  • 45 Raychaudhuri S, Conrad J, Hall BG, Ofengand J. RNA 1998; 4: 1407
  • 46 Ramamurthy V, Swann SL, Paulson JL, Spedaliere CJ, Mueller EG. J. Biol. Chem. 1999; 274: 22225
  • 47 Conrad J, Niu LH, Rudd K, Lane BG, Ofengand J. RNA 1999; 5: 751
  • 48 McCleverty CJ, Hornsby M, Spraggon G, Kreusch A. J. Mol. Biol. 2007; 373: 1243
  • 49 Fialho DM, Roche TP, Hud NV. Chem. Rev. 2020; 120: 4806
  • 50 Toti K, Renders M, Groaz E, Herdewijn P, Van Calenbergh S. Chem. Rev. 2015; 115: 13484
  • 51 Levy DE, Tang C. The Chemistry of C-Glycosides, Tetrahedron Organic Chemistry Series Volume 13. Pergamon; New York: 1995
  • 52 Nicotra F. Synthesis of C-Glycosides of Biological Interest. In Glycoscience: Synthesis of Substrate Analogs and Mimetics. Driguez H, Thiem J. Springer-Verlag; Berlin/Heidelberg: 2008. 55
  • 53 Nicotra F, Airoldi C, Cardona F. Synthesis of C- and S-Glycosides . In Comprehensive Glycoscience . Kamerling H. Elsevier; Amsterdam: 2007. 647
  • 54 Du Y, Linhardt JR. Tetrahedron 1998; 54: 9913
  • 55 Liu L, McKee M, Postema MH. D. Curr. Org. Chem. 2001; 5: 1133
    • 56a Shelton J, Lu X, Hollenbaugh JA, Cho JH, Amblard F, Schinazi RF. Chem. Rev. 2016; 116: 14379
    • 56b Banday, J.S.; Zargar, I.A.; Hudait, N.; Mukherjee, D. Vinyl sugar enol ethers in organic synthesis In Synthetic Strategies in Carbohydrate Chemistry, Elsevier, 2024, pp. 365.
  • 57 Silva DJ, Wang H, Allanson NM, Jain RK, Sofia MJ. J. Org. Chem. 1996; 64: 5926
  • 58 RNA Worlds: From Life’s Origins to Diversity in Gene Regulation . Atkins JF, Gesteland RF, Cech TR. Cold Spring Harbor Laboratory Press; New York: 2011
  • 59 Bernhardt HS. Biol. Direct 2012; 7: 23
  • 60 Yu CP, Chang HY, Chien TC. New J. Chem. 2019; 43: 8796
  • 61 Borchardt EK, Martinez NM, Gilbert WV. Ann. Rev. Genet. 2020; 54: 309
  • 62 Krohn K, Heins H, Wielckens K. J. Med. Chem. 1992; 35: 511
  • 63 Brown DM, Ogden RC. J. Chem. Soc., Perkin Trans. 1 1981; 723
  • 64 De Bernardo S, Weigele M. J. Org. Chem. 1976; 41: 287
  • 65 Kumar A, Gour A, Dhiman S, Hudait N, Kumar P, Vashishth D, Kaur S, Abdullah ST, Nandi U, Mukerjee D. Journal of Molecular Structure 2023; 1286: 135568
    • 66a Saksena AK, Ganguly AK. Tetrahedron Lett. 1981; 22: 5227
    • 66b Chun, B. K.; Clarke, M. O. H.; Doerffler, E.; Hui, H. C.; Jordan, R.; Mackman, R. L.; Parrish, J. P.; Ray, A. S.; Siegel, D. Gilead Sciences, Inc. Methods for treating filoviridae virus infections 2016069826 A1, 2016.
  • 67 Hu T, Zhu F, Xiang L, Shen J, Xie Y, Aisa HA. ACS Omega 2022; 7: 27516
    • 68a Vargas DF, Larghi EL, Kaufman TS. ACS Omega 2021; 6: 19356
    • 68b Trost, Barry M., and Lara S. Kallander. A versatile enantioselective strategy toward L-C-nucleosides: A total synthesis of L-Showdomycin; The Journal of Organic Chemistry 64.15 1999, 5427.
  • 69 Trost BM. J. Org. Chem. 2004; 69: 5813
  • 70 Barrett AG, Broughton HB, Attwood SV, Gunatilaka AL. J. Org. Chem. 1986; 51: 495
  • 71 Cristau HJ, Chabaud B, Labaudiniere R, Christol H. J. Org. Chem. 1986; 51: 875
  • 72 Joshi MS, Pigge FC. Org. Lett. 2016; 18: 5916
  • 73 Lim M.-I, Klein RS. Tetrahedron Lett. 1981; 22: 25
  • 74 Townsend LB, Gudmundsson KS, Daluge SM, Chen JJ, Zhu Z, Koszalka GW, Boyd L, Chamberlain SD, Freeman GA, Biron KK, Drach JC. Nucleosides Nucleotides 1999; 18: 509
  • 75 Sabat N, Ouarti A, Migianu-Griffoni E, Lecouvey M, Ferraris O, Gallier Peyrefitte C, Lubin-Germain N, Uziel J. Bioorg. Chem. 2022; 122: 105723
  • 76 Wang XK, Jia YM, Li YX, Yu CY. Org. Lett. 2022; 24: 511
  • 77 Okawa R, Aldrich CC, Ichikawa S. Chem. Commun. 2022; 58: 7956
  • 78 Lu T, Chen Q. Comput. Theor. Chem. 2021; 1200: 113249