Klin Monbl Augenheilkd 2024; 241(06): 772-779
DOI: 10.1055/a-2206-1297
Klinische Studie

Postoperative RNFL-Changes after Successful Trabeculectomy: 2-Year Outcomes

Article in several languages: deutsch | English
1   Klinik und Poliklinik für Augenheilkunde, Universitätsklinikum Leipzig, Deutschland
,
Catharina Busch
1   Klinik und Poliklinik für Augenheilkunde, Universitätsklinikum Leipzig, Deutschland
,
Matus Rehak
2   Klinik und Poliklinik für Augenheilkunde, Universitätsklinikum Innsbruck, Österreich
,
Christian Thomas Scharenberg
3   Augenheilkunde, Smile Eyes, Augen- und Laserzentrum, Leipzig, Deutschland
,
Olga Furashova
4   Klinik für Augenheilkunde, Klinikum Chemnitz gGmbH, Deutschland
,
1   Klinik und Poliklinik für Augenheilkunde, Universitätsklinikum Leipzig, Deutschland
5   Department für Augenheilkunde, Eberhard-Karls-Universität Tübingen, Universitätsklinikum Tübingen, Deutschland
,
Jan Darius Unterlauft
6   Universitäts-Augenklinik Bern, Inselspital Bern, Schweiz
› Author Affiliations

Abstract

Background The most important tool in glaucoma therapy is to lower the intraocular pressure to slow down the apoptosis of retinal ganglion cells. Trabeculectomy (TE) is considered the gold standard in glaucoma surgery. The aim of this study was to analyse the postoperative changes in retinal nerve fibre layer (RNFL) using optical coherence tomography (OCT) after TE.

Material and Methods We examined 40 patients naïve to prior glaucoma surgery retrospectively, who received a TE for medically uncontrolled primary open-angle glaucoma (POAG). Intraocular pressure (IOP), IOP-lowering medication, mean deviation of perimetry, visual acuity and peripapillary RNFL-thickness using OCT were evaluated during the first 24 month after TE.

Results In total 40 eyes from 40 patients were treated with TE. Mean IOP decreased from 25.0 ± 0,9 to 13.9 ± 0.6 (p < 0.01), and the mean number of IOP-lowering eye drops from 3.3 ± 0.2 to 0.5 ± 0.2 (p < 0.01). Visual acuity and mean deviation in perimetry remained stable while mean global RNFL-thickness decreased from 67.8 ± 2.9 to 63.7 ± 2.9 (p < 0.01) and 63.4 ± 2.9 µm (p < 0.01) 12 and 24 months after TE.

Conclusion The TE is an effective method to reduce the IOD and the amount of IOP-lowering medication. Nevertheless, a significant further loss in RNFL thickness was observed in the first 12 months after TE. Thus, RNFL changes seem to stabilise only after a protracted period.

Fazitbox
  • Seit vielen Jahren sind der IOD und die Perimetrie wichtige Bausteine, um die Glaukomprogression zu beurteilen. In den letzten Jahren wurden jedoch ergänzende bildgebende Verfahren entwickelt, wie z. B. die optische Kohärenztomografie (OCT), um die peripapilläre retinale Nervenfaserschichtdicke (RNFL) besser darstellen und quantifizieren zu können.

  • Ziel dieser Arbeit war es, die retinale Nervenfaserschichtdicke nach TE mittels OCT über einen Zeitraum von 24 Monaten zu beobachten.

  • Trotz erfolgreicher postoperativer Senkung von IOD und der Anzahl applizierter Antiglaukomatosa nahm die mittlere globale RNFL-Dicke innerhalb der ersten 6 postoperativen Monate ab.

  • Erst danach scheint sich die mittlere RNFL zu stabilisieren und blieb bis 24 Monate nach TE nahezu konstant. Aus diesem Grund scheinen die Ergebnisse der RNFL-Messungen erst nach dem 1. postoperativen Jahr für weitere Therapieentscheidungen bedeutsam zu sein.

Conclusion Box
  • For many years now, IOP and perimetry have been important components in the assessment of glaucoma progression. In recent years, however, we have seen the development of supplementary imaging techniques, such as optical coherence tomography (OCT), which make it possible to better visualize and quantify the thickness of the peripapillary retinal nerve fiber layer (RNFL).

  • The goal of this study was to observe RNFL thickness using OCT for a period of 24 months following TE.

  • Despite a successful reduction in IOP and in the number of antiglaucoma medications applied, the mean global RNFL thickness decreased during the first 6 months after surgery.

  • Only after this period did the mean RNFL appear to stabilize, and then remained virtually constant up to 24 months after TE. For this reason, it seems that results from RNFL measurements only become significant for treatment decisions after the first year following surgery.



Publication History

Received: 20 May 2023

Accepted: 30 October 2023

Article published online:
22 December 2023

© 2023. Thieme. All rights reserved.

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References/Literatur

  • 1 Flaxman SR, Bourne RRA, Resnikoff S. et al. Global causes of blindness and distance vision impairment 1990–2020: a systematic review and meta-analysis. Lancet Glob Health 2017; 12: e1221-e1234
  • 2 Leske MC, Connell AM, Wu SY. et al. Risk factors for open-angle glaucoma. The Barbados Eye Study. Arch Ophthalmol 1995; 113: 918-924
  • 3 Weinreb RN, Aung T, Medeiros FA. The pathophysiology and treatment of glaucoma: a review. JAMA 2014; 311: 1901-1911
  • 4 Quigley HA. Ganglion cell death in glaucoma: pathology recapitulates ontogeny. Aust N Z J Ophthalmol 1995; 23: 85-91
  • 5 Heijl A, Leske MC, Bengtsson B. et al. Reduction of intraocular pressure and glaucoma progression: results from the Early Manifest Glaucoma Trial. Arch Ophthalmol 2002; 120: 1268-1279
  • 6 Leske MC, Heijl A, Hussein M. et al. Factors for glaucoma progression and the effect of treatment: the early manifest glaucoma trial. Arch Ophthalmol 2003; 121: 48-56
  • 7 Razeghinejad MR, Spaeth GL. A history of the surgical management of glaucoma. Optom Vis Sci 2011; 88: E39-E47
  • 8 Mahmoudinezhad G, Moghimi S, Nishida T. et al. Association Between Rate of Ganglion Cell Complex Thinning and Rate of Central Visual Field Loss. JAMA Ophthalmol 2023; 141: 33-39
  • 9 Zhang X, Dastiridou A, Francis BA. et al. Advanced Imaging for Glaucoma Study Group. Comparison of Glaucoma Progression Detection by Optical Coherence Tomography and Visual Field. Am J Ophthalmol 2017; 184: 63-74
  • 10 Jeoung JW, Choi YJ, Park KH. et al. Macular ganglion cell imaging study: glaucoma diagnostic accuracy of spectral-domain optical coherence tomography. Invest Ophthalmol Vis Sci 2013; 54: 4422-4429
  • 11 Hood DC. Improving our understanding, and detection, of glaucomatous damage: An approach based upon optical coherence tomography (OCT). Prog Retin Eye Res 2017; 57: 46-75
  • 12 Kim WJ, Kim KN, Sung JY. et al. Relationship between preoperative high intraocular pressure and retinal nerve fibre layer thinning after glaucoma surgery. Sci Rep 2019; 9: 13901
  • 13 Chua J, Kadziauskiene A, Wong D. et al. One year structural and functional glaucoma progression after trabeculectomy. Sci Rep 2020; 10: 2808
  • 14 Waisbourd M, Ahmed OM, Molineaux J. et al. Reversible structural and functional changes after intraocular pressure reduction in patients with glaucoma. Graefes Arch Clin Exp Ophthalmol 2016; 254: 1159-1166
  • 15 Theilig T, Rehak M, Busch C. et al. Comparing the efficacy of trabeculectomy and XEN gel microstent implantation for the treatment of primary open-angle glaucoma: a retrospective monocentric comparative cohort study. Sci Rep 2020; 10: 19337
  • 16 Fontana H, Nouri-Mahdavi K, Caprioli J. Trabeculectomy with mitomycin C in pseudophakic patients with open-angle glaucoma: outcomes and risk factors for failure. Am J Ophthalmol 2006; 141: 652-659
  • 17 Kirwan JF, Lockwood AJ, Shah P. et al. Trabeculectomy in the 21st century: a multicenter analysis. Ophthalmology 2013; 120: 2532-2539
  • 18 Edmunds B, Thompson JR, Salmon JF. et al. The National Survey of Trabeculectomy. II. Variations in operative technique and outcome. Eye (Lond) 2001; 15: 441-448
  • 19 [Anonymous] The Advanced Glaucoma Intervention Study (AGIS): 7. The relationship between control of intraocular pressure and visual field deterioration. The AGIS Investigators. Am J Ophthalmol 2000; 130: 429-440
  • 20 Leske MC, Heijl A, Hyman L. et al. Factors for progression and glaucoma treatment: the Early Manifest Glaucoma Trial. Curr Opin Ophthalmol 2004; 15: 102-106
  • 21 Unterlauft JD. [Secondary Neuroprotection in Glaucoma by Reduction of Intraocular Pressure]. Klin Monbl Augenheilkd 2019; 237: 150-157
  • 22 Junoy Montolio FG, Muskens R, Jansonius NM. Influence of glaucoma surgery on visual function: a clinical cohort study and meta-analysis. Acta Ophthalmol 2019; 97: 193-199
  • 23 Folgar FA, De Moraes CG, Teng CC. et al. Effect of successful and partly successful filtering surgery on the velocity of glaucomatous visual field progression. J Glaucoma 2012; 21: 615-618
  • 24 Sanchez FG, Sanders DS, Moon JJ. et al. Effect of Trabeculectomy on OCT Measurements of the Optic Nerve Head Neuroretinal Rim Tissue. Ophthalmol Glaucoma 2020; 3: 32-39
  • 25 Gietzelt C, von Goscinski C, Lemke J. et al. Dynamics of structural reversal in Bruchʼs membrane opening-based morphometrics after glaucoma drainage device surgery. Graefes Arch Clin Exp Ophthalmol 2020; 258: 1227-1236
  • 26 Mwanza JC, Budenz DL, Warren JL. et al. Retinal nerve fibre layer thickness floor and corresponding functional loss in glaucoma. Br J Ophthalmol 2015; 99: 732-737
  • 27 Mwanza JC, Kim HY, Budenz DL. et al. Residual and Dynamic Range of Retinal Nerve Fiber Layer Thickness in Glaucoma: Comparison of Three OCT Platforms. Invest Ophthalmol Vis Sci 2015; 56: 6344-6351