Zentralbl Chir 2024; 149(06): 522-528
DOI: 10.1055/a-2211-4898
Übersicht

Update zur Navigation im OP-Saal

Status Quo of Surgical Navigation
Philipp Anthony Wise
1   Klinik für Allgemein-, Viszeral- und Transplantationschirurgie, Universitätsklinikum Heidelberg, Heidelberg, Deutschland (Ringgold ID: RIN27178)
,
Alexander Studier-Fischer
1   Klinik für Allgemein-, Viszeral- und Transplantationschirurgie, Universitätsklinikum Heidelberg, Heidelberg, Deutschland (Ringgold ID: RIN27178)
,
Thilo Hackert
2   Klinik für Allgemein-, Viszeral- und Thoraxchirurgie, Universitätsklinikum Hamburg-Eppendorf, Hamburg, Deutschland (Ringgold ID: RIN37734)
,
Felix Nickel
2   Klinik für Allgemein-, Viszeral- und Thoraxchirurgie, Universitätsklinikum Hamburg-Eppendorf, Hamburg, Deutschland (Ringgold ID: RIN37734)
1   Klinik für Allgemein-, Viszeral- und Transplantationschirurgie, Universitätsklinikum Heidelberg, Heidelberg, Deutschland (Ringgold ID: RIN27178)
› Author Affiliations

Zusammenfassung

Die chirurgische Navigation, auch als computerunterstützte oder bildgeführte Chirurgie bezeichnet, ist eine Technik, die eine Vielzahl von Methoden wie 3-D-Bildgebung, Tracking-Systeme, spezialisierte Software und Robotik einsetzt oder als Plattform nutzt, um Chirurgen während chirurgischen Eingriffen zu unterstützen. Diese neuen Technologien zielen darauf ab, nicht nur die Genauigkeit und Präzision chirurgischer Eingriffe zu erhöhen, sondern auch weniger invasive Ansätze zu ermöglichen, mit dem Ziel, Komplikationen zu reduzieren und die operativen Ergebnisse für Patienten zu verbessern. Durch die Integration aufkommender digitaler Technologien verspricht die chirurgische Navigation komplexe Eingriffe in verschiedenen medizinischen Disziplinen zu unterstützen. In den letzten Jahren hat das Gebiet der chirurgischen Navigation bedeutende Fortschritte gemacht. Die abdominelle chirurgische Navigation, insbesondere Endoskopie und laparoskopische sowie robotergestützte Chirurgie, durchläuft derzeit eine Phase rascher Entwicklung. Schwerpunkte sind bildgestützte Navigation, Instrumentenverfolgung sowie die mögliche Integration von erweiterter und gemischter Realität (Augmented Reality, AR; Mixed Reality, MR). Dieser Artikel wird sich eingehend mit den neuesten Entwicklungen in der chirurgischen Navigation befassen, von modernsten intraoperativen Technologien wie hyperspektraler und fluoreszierender Bildgebung bis hin zur Integration präoperativer radiologischer Bildgebung im intraoperativen Setting.

Abstract

Surgical navigation, also referred to as computer-assisted or image-guided surgery, is a technique that employs a variety of methods – such as 3D imaging, tracking systems, specialised software, and robotics to support surgeons during surgical interventions. These emerging technologies aim not only to enhance the accuracy and precision of surgical procedures, but also to enable less invasive approaches, with the objective of reducing complications and improving operative outcomes for patients. By harnessing the integration of emerging digital technologies, surgical navigation holds the promise of assisting complex procedures across various medical disciplines. In recent years, the field of surgical navigation has witnessed significant advances. Abdominal surgical navigation, particularly endoscopy, laparoscopic, and robot-assisted surgery, is currently undergoing a phase of rapid evolution. Emphases include image-guided navigation, instrument tracking, and the potential integration of augmented and mixed reality (AR, MR). This article will comprehensively delve into the latest developments in surgical navigation, spanning state-of-the-art intraoperative technologies like hyperspectral and fluorescent imaging, to the integration of preoperative radiological imaging within the intraoperative setting.



Publication History

Received: 21 May 2023

Accepted after revision: 14 November 2023

Article published online:
06 December 2023

© 2023. Thieme. All rights reserved.

Georg Thieme Verlag KG
Oswald-Hesse-Straße 50, 70469 Stuttgart, Germany

 
  • Literatur

  • 1 Zhou XY, Guo Y, Shen M. et al. Application of artificial intelligence in surgery. Front Med 2020; 14: 417-430
  • 2 Lave A, Meling TR, Schaller K. et al. Augmented reality in intracranial meningioma surgery: a case report and systematic review. J Neurosurg Sci 2020; 64: 369-376
  • 3 Hussain R, Lalande A, Guigou C. et al. Contribution of Augmented Reality to Minimally Invasive Computer-Assisted Cranial Base Surgery. IEEE J Biomed Health Inform 2020; 24: 2093-2106
  • 4 Kenngott HG, Wagner M, Gondan M. et al. Real-time image guidance in laparoscopic liver surgery: first clinical experience with a guidance system based on intraoperative CT imaging. Surg Endosc 2014; 28: 933-940
  • 5 Nakayama Y, Li Q, Katsuragawa S. et al. Automated hepatic volumetry for living related liver transplantation at multisection CT. Radiology 2006; 240: 743-748
  • 6 Ishifuro M, Horiguchi J, Nakashige A. et al. Use of multidetector row CT with volume renderings in right lobe living liver transplantation. Eur Radiol 2002; 12: 2477-2483
  • 7 Kamel IR, Kruskal JB, Warmbrand G. et al. Accuracy of volumetric measurements after virtual right hepatectomy in potential donors undergoing living adult liver transplantation. AJR Am J Roentgenol 2001; 176: 483-487
  • 8 Chambers TP, Fishman EK, Bluemke DA. et al. Identification of the Aberrant Hepatic Artery with Axial Spiral CT. J Vasc Interv Radiol 1995; 6: 959-964
  • 9 Nickel F, Kenngott HG, Neuhaus J. et al. Computer tomographic analysis of organ motion caused by respiration and intraoperative pneumoperitoneum in a porcine model for navigated minimally invasive esophagectomy. Surg Endosc 2018; 32: 4216-4227
  • 10 Wagner M, Gondan M, Zollner C. et al. Electromagnetic organ tracking allows for real-time compensation of tissue shift in image-guided laparoscopic rectal surgery: results of a phantom study. Surg Endosc 2016; 30: 495-503
  • 11 Srimathveeravalli G, Leger J, Ezell P. et al. A study of porcine liver motion during respiration for improving targeting in image-guided needle placements. Int J Comput Assist Radiol Surg 2013; 8: 15-27
  • 12 Vásquez Osorio E, Hoogeman M, Romero A. et al. Accurate CT/MR vessel-guided nonrigid registration of largely deformed livers. Med Phys 2012; 39: 2463-2477
  • 13 Meireles OR, Rosman G, Altieri MS. et al. SAGES consensus recommendations on an annotation framework for surgical video. Surg Endosc 2021; 35: 4918-4929
  • 14 Garrow CR, Kowalewski KF, Li L. et al. Machine Learning for Surgical Phase Recognition: A Systematic Review. Ann Surg 2021; 273: 684-693
  • 15 Smit A, Jain S, Rajpurkar P. et al. CheXbert: Combining Automatic Labelers and Expert Annotations for Accurate Radiology Report Labeling Using BERT. arXiv e-prints 2020;
  • 16 Frulio N, Trillaud H. Ultrasound elastography in liver. Diagn Interv Imaging 2013; 94: 515-534
  • 17 D’Onofrio M, Gallotti A, Martone E. et al. Is intraoperative ultrasound (IOUS) still useful for the detection of liver metastases?. J Ultrasound 2009; 12: 144-147
  • 18 Lubner MG, Mankowski Gettle L, Kim DH. et al. Diagnostic and procedural intraoperative ultrasound: technique, tips and tricks for optimizing results. Br J Radiol 2021; 94: 20201406
  • 19 Joo I. The role of intraoperative ultrasonography in the diagnosis and management of focal hepatic lesions. Ultrasonography 2015; 34: 246-257
  • 20 Beller S, Hünerbein M, Eulenstein S. et al. Feasibility of navigated resection of liver tumors using multiplanar visualization of intraoperative 3-dimensional ultrasound data. Ann Surg 2007; 246: 288-294
  • 21 Jelly E, Kwun J, Schmitz R. et al. Optical coherence tomography of small intestine allograft biopsies using a handheld surgical probe. J Biomed Opt 2021; 26: 096008
  • 22 Dietrich M, Özdemir B, Gruneberg D. et al. Hyperspectral Imaging for the Evaluation of Microcirculatory Tissue Oxygenation and Perfusion Quality in Haemorrhagic Shock: A Porcine Study. Biomedicines 2021; 9: 1829
  • 23 Holmer A, Marotz J, Wahl P. et al. Hyperspectral imaging in perfusion and wound diagnostics – methods and algorithms for the determination of tissue parameters. Biomed Tech (Berl) 2018; 63: 547-556
  • 24 Holmer A, Tetschke F, Marotz J. et al. Oxygenation and perfusion monitoring with a hyperspectral camera system for chemical based tissue analysis of skin and organs. Physiol Meas 2016; 37: 2064-2078
  • 25 Grambow E, Dau M, Holmer A. et al. Hyperspectral imaging for monitoring of perfusion failure upon microvascular anastomosis in the rat hind limb. Microvasc Res 2018; 116: 64-70
  • 26 Akbari H, Uto K, Kosugi Y. et al. Cancer detection using infrared hyperspectral imaging. Cancer Sci 2011; 102: 852-857
  • 27 Baltussen EJM, Kok END, Brouwer de Koning SG. et al. Hyperspectral imaging for tissue classification, a way toward smart laparoscopic colorectal surgery. J Biomed Opt 2019; 24: 1-9
  • 28 Beaulieu RJ, Goldstein SD, Singh J. et al. Automated diagnosis of colon cancer using hyperspectral sensing. Int J Med Robot 2018; 14: e1897
  • 29 Maktabi M, Köhler H, Ivanova M. et al. Tissue classification of oncologic esophageal resectates based on hyperspectral data. Int J Comput Assist Radiol Surg 2019; 14: 1651-1661
  • 30 Martinez B, Leon R, Fabelo H. et al. Most relevant spectral bands identification for brain cancer detection using hyperspectral imaging. Sensors (Basel) 2019; 19: 5481
  • 31 Alius C, Oprescu S, Balalau C. et al. Indocyanine green enhanced surgery; principle, clinical applications and future research directions. J Clin Invest Surg 2018; 3: 1-8
  • 32 Baiocchi GL, Diana M, Boni L. Indocyanine green-based fluorescence imaging in visceral and hepatobiliary and pancreatic surgery: State of the art and future directions. World J Gastroenterol 2018; 24: 2921-2930
  • 33 Degett TH, Andersen HS, Gogenur I. Indocyanine green fluorescence angiography for intraoperative assessment of gastrointestinal anastomotic perfusion: a systematic review of clinical trials. Langenbecks Arch Surg 2016; 401: 767-775
  • 34 Cassinotti E, Al-Taher M, Antoniou SA. et al. European Association for Endoscopic Surgery (EAES) consensus on Indocyanine Green (ICG) fluorescence-guided surgery. Surg Endosc 2023; 37: 1629-1648
  • 35 Slooter MD, Eshuis WJ, Cuesta MA. et al. Fluorescent imaging using indocyanine green during esophagectomy to prevent surgical morbidity: a systematic review and meta-analysis. J Thorac Dis 2019; 11: S755-S765
  • 36 Keller DS, Ishizawa T, Cohen R. et al. Indocyanine green fluorescence imaging in colorectal surgery: overview, applications, and future directions. Lancet Gastroenterol Hepatol 2017; 2: 757-766
  • 37 de Muynck L, White KP, Alseidi A. et al. Consensus Statement on the Use of Near-Infrared Fluorescence Imaging during Pancreatic Cancer Surgery Based on a Delphi Study: Surgeons’ Perspectives on Current Use and Future Recommendations. Cancers (Basel) 2023; 15: 652
  • 38 Carus T, Dammer R. Laparoscop fluorescence angiography with indocyanine green to control the perfusion of gastrointestinal anastomoses intraoperatively. Surg Technol Int 2012; 22: 27-32
  • 39 Dupree A, von Kroge PH, Izbicki JR. et al. [Fluorescence angiography for esophageal anastomoses : Perfusion evaluation of the gastric conduit with indocyanine green]. Chirurg 2019; 90: 875-879
  • 40 Gosvig K, Jensen SS, Qvist N. et al. Remote computer-assisted analysis of ICG fluorescence signal for evaluation of small intestinal anastomotic perfusion: a blinded, randomized, experimental trial. Surg Endosc 2020; 34: 2095-2102
  • 41 Crane LM, Themelis G, Buddingh KT. et al. Multispectral real-time fluorescence imaging for intraoperative detection of the sentinel lymph node in gynecologic oncology. J Vis Exp 2010; (44) 2225
  • 42 Levin M, McKechnie T, Kruse CC. et al. Surgical data recording in the operating room: a systematic review of modalities and metrics. Br J Surg 2021; 108: 613-621
  • 43 Yang X, Narasimhan S, Luo M. et al. Development and evaluation of a “trackerless” surgical planning and guidance system based on 3D Slicer. J Med Imaging (Bellingham) 2019; 6: 035002
  • 44 Mersmann S, Seitel A, Erz M. et al. Calibration of time-of-flight cameras for accurate intraoperative surface reconstruction. Med Phys 2013; 40: 082701
  • 45 Kenngott HG, Nickel F, Preukschas AA. et al. Effects of laparoscopy, laparotomy, and respiratory phase on liver volume in a live porcine model for liver resection. Surg Endosc 2021; 35: 7049-7057
  • 46 Nickel F, Kenngott HG, Neuhaus J. et al. Computer tomographic analysis of organ motion caused by respiration and intraoperative pneumoperitoneum in a porcine model for navigated minimally invasive esophagectomy. Surg Endosc 2018; 32: 4216-4227
  • 47 Nickel F, Kenngott HG, Neuhaus J. et al. Navigation system for minimally invasive esophagectomy: experimental study in a porcine model. Surg Endosc 2013; 27: 3663-3670
  • 48 Kenngott HG, Wegner I, Neuhaus J. et al. Magnetic tracking in the operation room using the da Vinci(®) telemanipulator is feasible. J Robot Surg 2013; 7: 59-64
  • 49 Vadala G, De Salvatore S, Ambrosio L. et al. Robotic Spine Surgery and Augmented Reality Systems: A State of the Art. Neurospine 2020; 17: 88-100
  • 50 Rizzetto F, Bernareggi A, Rantas S. et al. Immersive Virtual Reality in surgery and medical education: Diving into the future. Am J Surg 2020; 220: 856-857
  • 51 Lang H, Huber T. Virtual and Augmented Reality in Liver Surgery. Ann Surg 2020; 271: e8
  • 52 Kim HJ, Jo YJ, Choi JS. et al. Virtual Reality Simulation and Augmented Reality-Guided Surgery for Total Maxillectomy: A Case Report. Appl Sci 2020; 10: 6288
  • 53 Garrett B, Taverner T, Gromala D. et al. Virtual Reality Clinical Research: Promises and Challenges. JMIR Serious Games 2018; 6: e10839
  • 54 Barber SR, Jain S, Mooney MA. et al. Combining Stereoscopic Video and Virtual Reality Simulation to Maximize Education in Lateral Skull Base Surgery. Otolaryngol Head Neck Surg 2020; 162: 922-925
  • 55 Rogers MP, DeSantis AJ, Janjua H. et al. The future surgical training paradigm: Virtual reality and machine learning in surgical education. Surgery 2021; 169: 1250-1252
  • 56 Nickel F, Brzoska JA, Gondan M. et al. Virtual reality training versus blended learning of laparoscopic cholecystectomy: a randomized controlled trial with laparoscopic novices. Medicine (Baltimore) 2015; 94: e764
  • 57 Felinska EA, Fuchs TE, Kogkas A. et al. Telestration with augmented reality improves surgical performance through gaze guidance. Surg Endosc 2023; 37: 3557-3566
  • 58 Wild C, Lang F, Gerhäuser AS. et al. Telestration with augmented reality for visual presentation of intraoperative target structures in minimally invasive surgery: a randomized controlled study. Surg Endosc 2022; 36: 7453-7461
  • 59 Nickel F, Cizmic A, Chand M. Telestration and Augmented Reality in Minimally Invasive Surgery: An Invaluable Tool in the Age of COVID-19 for Remote Proctoring and Telementoring. JAMA Surg 2022; 157: 169-170
  • 60 Müller LR, Petersen J, Yamlahi A. et al. Robust hand tracking for surgical telestration. Int J Comput Assist Radiol Surg 2022; 17: 1477-1486
  • 61 Zhang J, Gao F, Ye Z. Remote consultation based on mixed reality technology. Global Health Journal 2020; 4: 31-32
  • 62 Li J, Chen G, de Ridder H. et al. Designing a Social VR Clinic for Medical Consultations. In: Extended Abstracts of the 2020 CHI Conference on Human Factors in Computing Systems. 2020. Honolulu, HI, USA: Accessed November 21, 2023 at: https://dl.acm.org/doi/10.1145/3334480.3382836
  • 63 Hollander JE, Carr BG. Virtually Perfect? Telemedicine for Covid-19. N Engl J Med 2020; 382: 1679-1681
  • 64 Dorsey ER, Topol EJ. Telemedicine 2020 and the next decade. Lancet 2020; 395: 859
  • 65 Giammalva GR, Ferini G, Musso S. et al. Intraoperative Ultrasound: Emerging Technology and Novel Applications in Brain Tumor Surgery. Front Oncol 2022; 12: 818446
  • 66 Maragkos GA, Schüpper AJ, Lakomkin N. et al. Fluorescence-Guided High-Grade Glioma Surgery More Than Four Hours After 5-Aminolevulinic Acid Administration. Front Neurol 2021; 12: 644804
  • 67 Birkhoff DC, van Dalen ASHM, Schijven MP. A Review on the Current Applications of Artificial Intelligence in the Operating Room. Surg Innov 2021; 28: 611-619
  • 68 Moglia A, Georgiou K, Georgiou E. et al. A systematic review on artificial intelligence in robot-assisted surgery. Int J Surg 2021; 95: 106151
  • 69 Abadir AP, Ali MF, Karnes W. et al. Artificial Intelligence in Gastrointestinal Endoscopy. Clin Endosc 2020; 53: 132-141
  • 70 Navarrete-Welton AJ, Hashimoto DA. Current applications of artificial intelligence for intraoperative decision support in surgery. Front Med 2020; 14: 369-381
  • 71 Loftus TJ, Filiberto AC, Balch J. et al. Intelligent, Autonomous Machines in Surgery. J Surg Res 2020; 253: 92-99
  • 72 Hashimoto DA, Rosman G, Rus D. et al. Artificial Intelligence in Surgery: Promises and Perils. Ann Surg 2018; 268: 70-76
  • 73 Madani A, Namazi B, Altieri MS. et al. Artificial Intelligence for Intraoperative Guidance: Using Semantic Segmentation to Identify Surgical Anatomy During Laparoscopic Cholecystectomy. Ann Surg 2022; 276: 363-369
  • 74 World Health Organization. Ethics and governance of artificial intelligence for health: WHO guidance. 2021 Accessed November 23, 2023 at: https://www.who.int/publications/i/item/9789240029200
  • 75 Vasey B, Nagendran M, Campbell B. et al. Reporting guideline for the early-stage clinical evaluation of decision support systems driven by artificial intelligence: DECIDE-AI. Nat Med 2022; 28: 924-933
  • 76 Collins GS, Dhiman P, Andaur Navarro CL. et al. Protocol for development of a reporting guideline (TRIPOD-AI) and risk of bias tool (PROBAST-AI) for diagnostic and prognostic prediction model studies based on artificial intelligence. BMJ Open 2021; 11: e048008
  • 77 Liu X, Cruz Rivera S, Moher D. et al. Reporting guidelines for clinical trial reports for interventions involving artificial intelligence: the CONSORT-AI extension. Nat Med 2020; 26: 1364-1374
  • 78 Nagendran M, Chen Y, Lovejoy CA. et al. Artificial intelligence versus clinicians: systematic review of design, reporting standards, and claims of deep learning studies. BMJ 2020; 368: m689