physioscience 2024; 20(04): 163-169
DOI: 10.1055/a-2218-1201
Original Article

Construct validity and test-retest reliability of the Modified Agility T-Test in healthy adults

A single-center cross-sectional studyKonstruktvalidität und Test-Retest-Reliabilität des Modifizierten Agility-T-Tests (MAT) bei gesunden ErwachsenenEine monozentrische Querschnittsstudie
John Zürcher
1   Hospital of Thun, Spital Simmental-Thun-Saanenland (STS) AG, Thun, Switzerland
2   ZHAW Zurich University of Applied Sciences, School of Health Sciences, Institute of Physiotherapy, Winterthur, Switzerland
,
Seraina Liechti
1   Hospital of Thun, Spital Simmental-Thun-Saanenland (STS) AG, Thun, Switzerland
,
Jürgen Degenfellner
2   ZHAW Zurich University of Applied Sciences, School of Health Sciences, Institute of Physiotherapy, Winterthur, Switzerland
,
Fabian Pfeiffer
2   ZHAW Zurich University of Applied Sciences, School of Health Sciences, Institute of Physiotherapy, Winterthur, Switzerland
,
Christoph Bauer
2   ZHAW Zurich University of Applied Sciences, School of Health Sciences, Institute of Physiotherapy, Winterthur, Switzerland
3   Lake Lucerne Institute, Vitznau, Switzerland
› Author Affiliations

Abstract

Background After a lower limb injury, adequate agility is decisive for safe direction changes and reduces the risk of re-injury upon return to sports. Experts recommend that patients should pass standardized return to sports testing which involves agility tests such as the Modified Agility T-Test.

Aim Since the quality criteria of the Modified Agility T-Test have not been conclusively clarified, the objective of this study was to evaluate the construct validity and test-retest reliability of the Modified Agility T-Test.

Methods The study was conducted as a single-center study in a cross-sectional design comparing the performance of the Modified Agility T-Test with the Illinois Agility Test to evaluate the construct validity of the Modified Agility T-Test. The construct validity was calculated with the Pearson’s correlation coefficient. Absolute and relative reliability were calculated based on the test-retest results. Each participant performed two counting trials of both agility tests. To determine the absolute test-retest reliability, the standard error of measurement, 95 % limits of agreement and the smallest detectable change were calculated. To determine the relative test-retest reliability, the intraclass correlation coefficient 2.1 was calculated.

Results A total of 30 participants were recruited, with equal sex distribution and a mean age of 25.7 years. Our results showed a high construct validity of the Modified Agility T-Test (r = 0.89). The absolute test-retest reliability of the Modified Agility T-Test was 0.18 (-0.38–0.62) seconds, whereas the smallest detectable change was calculated to be 0.71 seconds. The relative test-retest reliability amounted to 0.84 (ICC 2.1).

Conclusions Our findings support the construct validity and test-retest reliability of the Modified Agility T-Test as an agility test. Thus, it could be used as an alternative to the Illinois Agility Test, particularly in sports which require sideways or backwards movements and for sports with short or rapid displacements.

Zusammenfassung

Hintergrund Nach einer Verletzung der unteren Extremität ist eine hinreichende Agilität entscheidend, um Richtungswechsel sicher ausführen zu können. Dadurch wird das Risiko einer erneuten Verletzung bei der Rückkehr zum Sport reduziert. Bevor Patient*innen zum Sport zurückkehren, sollten sie eine standardisierte Testbatterie bestehen. Diese Testbatterie sollte Agilitätstests, wie den Modifizierten Agility-T-Test, beinhalten.

Ziel Da die Qualitätskriterien des Modifizierten Agility-T-Tests nicht abschließend geklärt sind, war das primäre Ziel dieser Studie, die Konstruktvalidität und Test-Retest-Reliabilität des Modifizierten Agility-T-Tests zu untersuchen.

Methoden Die Studie wurde als monozentrische Studie im Querschnittsdesign durchgeführt. Um die Konstruktvalidität des Modifizierten Agility-T-Tests zu bewerten, wurde die Sprintzeit des Modifizierten Agility-T-Tests mit der des Illinois-Agility-Tests verglichen. Die Konstruktvalidität wurde durch den Korrelationskoeffizienten von Pearson berechnet. Die absolute und relative Reliabilität wurde auf Grundlage der Test-Retest-Ergebnisse berechnet. Alle Teilnehmenden absolvierten 2 zählende Versuche beider Agilitätstests. Zur Bestimmung der absoluten Test-Retest-Reliabilität wurden der Standardmessfehler, die 95 % Limits of Agreement und die kleinste nachweisbare Veränderung berechnet. Zur Bestimmung der relativen Test-Retest-Reliabilität wurde der Intraklassen-Korrelationskoeffizient 2,1 berechnet.

Ergebnisse 30 Teilnehmende mit gleichmässiger Verteilung der Geschlechter und einem Durchschnittsalter von 25,7 Jahren wurden rekrutiert. Der Modifizierte Agility-T-Test zeigte eine hohe Konstruktvalidität (r = 0,89). Die absolute Test-Retest-Reliabilität für den Modifizierten Agility-T-Test betrug 0,18 (–0,38–0,62) Sekunden, wobei die kleinste nachweisbare Änderung auf 0,71 Sekunden berechnet wurde. Die relative Test-Retest-Reliabilität für den Modifizierten Agility-T-Test beträgt 0,84 (ICC 2,1).

Schlussfolgerungen Unsere Ergebnisse unterstützen die Konstruktvalidität und Test-Retest-Reliabilität des Modifizierten Agility-T-Tests als Agilitätstest. Der Modifizierte Agility-T-Test kann somit als Alternative zum Illinois-Agility-Test verwendet werden. Das gilt insbesondere für Sportarten, die seitliche oder rückwärts gerichtete Bewegungen erfordern, sowie für Sportarten mit kurzen oder schnellen Richtungswechseln.



Publication History

Received: 18 November 2023

Accepted: 08 March 2024

Article published online:
31 May 2024

© 2024. Thieme. All rights reserved.

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

  • 1 Heppard JM, Young WB. Agility literature review: Classifications, training and testing. J Sports Sciences 2006; 24: 919-932
  • 2 Barber-Westin S, Noyes FR. Hrsg. Neuromuscular Function, Agility, and Aerobic Testing. In: Noyes FR, Barber WestinS. Hrsg. Return to Sport after ACL Reconstruction and Other Knee Operations Limiting the Risk of Reinjury and Maximizing Athletic Performance. Cham: Springer; 2019: 481-503
  • 3 Bloomfield J, Ackland TR, Elliott BC. Applied anatomy and biomechanics in sport. Melbourne Oxford Paris [etc.]: Blackwell scientific publ 1994
  • 4 Sassi RH, Dardouri W, Yahmed MH. et al. Relative and Absolute Reliability of a Modified Agility T-test and Its Relationship With Vertical Jump and Straight Sprint. J Strength Conditioning Res 2009; 23: 1644-1651
  • 5 Taylor JB, Wright AA, Dischiavi SL. et al. Activity Demands During Multi-Directional Team Sports: A Systematic Review. Sports Med 2017; 47: 2533-2551
  • 6 Stewart PF, Turner AN, Miller SC. Reliability, factorial validity, and interrelationships of five commonly used change of direction speed tests. Scan J Med & Science Sports 2014; 24: 500-506
  • 7 Negra Y, Chaabene H, Hammami M. et al. Agility in Young Athletes: Is It a Different Ability From Speed and Power?. J Strength Conditioning Res 2017; 31: 727-735
  • 8 Raya MA, Gailey RS, Gaunaurd IA. et al. Comparison of three agility tests with male servicemembers: Edgren Side Step Test, T-Test, and Illinois Agility Test. J Rehabil Res Dev 2013; 50: 951-960
  • 9 Kutlu M, Yapici H, Yilmaz A. Reliability and Validity of a New Test of Agility and Skill for Female Amateur Soccer Players. J Human Kinetics 2017; 56: 219-227
  • 10 Hachana Y, Chaabène H, Nabli MA. et al. Test-Retest Reliability, Criterion-Related Validity, and Minimal Detectable Change of the Illinois Agility Test in Male Team Sport Athletes. J Strength and Conditioning Res 2013; 27: 2752-2759
  • 11 Makhlouf I, Chaouachi A, Chaouachi M. et al. Combination of Agility and Plyometric Training Provides Similar Training Benefits as Combined Balance and Plyometric Training in Young Soccer Players. Front Physiol 2018; 9: 1611
  • 12 Jarvis S, Sullivan LO, Davies B. et al. Interrelationships Between Measured Running Intensities and Agility Performance in Subelite Rugby Union Players. Res Sports Med 2009; 17: 217-230
  • 13 Sekulic D, Uljevic O, Peric M. et al. Reliability and Factorial Validity of Non-Specific and Tennis-Specific Pre-Planned Agility Tests; Preliminary Analysis. J Human Kinetics 2017; 55: 107-116
  • 14 Gabbett TJ, Jenkins DG, Abernethy B. Physical demands of professional rugby league training and competition using microtechnology. J Science Med Sport 2012; 15: 80-86
  • 15 Kovacs MS. Applied physiology of tennis performance. Brit J Sports Med 2006; 40: 381-386
  • 16 Spencer M, Lawrence S, Rechichi C. et al. Time–motion analysis of elite field hockey, with special reference to repeated-sprint activity. J Sports Sciences 2004; 22: 843-850
  • 17 Vescovi JD, Mcguigan MR. Relationships between sprinting, agility, and jump ability in female athletes. J Sports Sciences 2008; 26: 97-107
  • 18 Taylor R. Interpretation of the Correlation Coefficient: A Basic Review. J Diagnostic Med Sonography 1990; 6: 35-39
  • 19 Shrout PE, Fleiss JL. Intraclass correlations: Uses in assessing rater reliability. Psychological Bulletin 1979; 86: 420-428
  • 20 de Vet HCW, Terwee CB, Mokkink LB. et al. Reliability. In: Measurement in Medicine: A Practical Guide.. Cambridge: Cambridge University Press; 2011: 96–149 (Practical Guides to Biostatistics and Epidemiology)
  • 21 Korhonen MT, Mero A, Suominen H. Age-Related Differences in 100-m Sprint Performance in Male and Female Master Runners. Med Science Sports & Exercise 2003; 35: 1419-1428
  • 22 Lord F, Novik M, Birnbaum A. 6.4 Criterion validity. Measurement in medicine: a practical guide. Cambridge: New York: Cambridge University Press; 2011: 159-163
  • 23 Shoukri MM, Asyali MH, Donner A. Sample size requirements for the design of reliability study: review and new results. Stat Methods Med Res 2004; 13: 251-271
  • 24 Semenick D. CSCS. Tests and Measerments. The T-test. National Strength and Conditioning Association Journal 1990; 12: 36-37
  • 25 R Core Team, Hrsg. R. A language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing; 2022. Im Internet: www.R-project.org (Stand 15.05.2024)
  • 26 de Vet HCW, Terwee CB, Mokkink LB. et al. Validity. In: Measurement in Medicine: A Practical Guide. Cambridge. Cambridge University Press; 2011: 150-201 (Practical Guides to Biostatistics and Epidemiology)