Klin Monbl Augenheilkd 2024; 241(06): 727-733
DOI: 10.1055/a-2219-1010
Übersicht

3D Mapping of the DMEK Detachment Area from OCT Scans of the Anterior Segment of the Eye – Clinical Applications

Article in several languages: deutsch | English
1   Klinik für Augenheilkunde, Universitätsklinikum Freiburg, Deutschland
,
Andreas Glatz
2   Lohfert & Lohfert AG, Hamburg, Deutschland
,
Daniel Böhringer
1   Klinik für Augenheilkunde, Universitätsklinikum Freiburg, Deutschland
,
1   Klinik für Augenheilkunde, Universitätsklinikum Freiburg, Deutschland
,
Judith-Lisa Lieberum
1   Klinik für Augenheilkunde, Universitätsklinikum Freiburg, Deutschland
,
Thomas Reinhard
1   Klinik für Augenheilkunde, Universitätsklinikum Freiburg, Deutschland
,
1   Klinik für Augenheilkunde, Universitätsklinikum Freiburg, Deutschland
› Author Affiliations

Abstract

Graft detachment is the most common complication after Descemet membrane endothelial keratoplasty (DMEK). To assess the amount of graft detachment, precision is limited when using slit-lamp biomicroscopy. Detachment of DMEK grafts can be assessed automatically on anterior segment optical coherence tomography (AS OCT) images and allows visualization of the area and volume of detachment using 3D maps. This article provides an overview of its applications such as accurately assessing the course of natural graft attachment, identification of potential risk factors for detachment and evaluation of the long-term effect of graft detachment. The 3D map of DMEK detachment may support researchers and clinicians in precise quantification of the area and volume of graft detachment even in large data sets, and the intuitive, fast and reliable evaluation.



Publication History

Received: 28 November 2023

Accepted: 08 January 2024

Article published online:
30 April 2024

© 2024. Thieme. All rights reserved.

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References/Literatur

  • 1 Flockerzi E, Turner C, Seitz B. et al. Descemetʼs membrane endothelial keratoplasty is the predominant keratoplasty procedure in Germany since 2016: a report of the DOG-section cornea and its keratoplasty registry. Br J Ophthalmol 2023; DOI: 10.1136/bjo-2022-323162.
  • 2 Deng SX, Lee WB, Hammersmith KM. et al. Descemet Membrane Endothelial Keratoplasty: Safety and Outcomes: A Report by the American Academy of Ophthalmology. Ophthalmology 2018; 125: 295-310 DOI: 10.1016/j.ophtha.2017.08.015.
  • 3 Parekh M, Leon P, Ruzza A. et al. Graft detachment and rebubbling rate in Descemet membrane endothelial keratoplasty. Surv Ophthalmol 2018; 63: 245-250 DOI: 10.1016/j.survophthal.2017.07.003.
  • 4 Glatz A, Böhringer D, Zander DB. et al. Three-dimensional map of Descemet membrane endothelial keratoplasty detachment: development and application of a deep learning model. Ophthalmol Sci 2021; 1: 100067 DOI: 10.1016/j.xops.2021.100067.
  • 5 Ang M, Wilkins MR, Mehta JS. et al. Descemet membrane endothelial keratoplasty. Br J Ophthalmol 2016; 100: 15-21 DOI: 10.1136/bjophthalmol-2015-306837.
  • 6 Dirisamer M, van Dijk K, Dapena I. et al. Prevention and management of graft detachment in Descemet membrane endothelial keratoplasty. Arch Ophthalmol 2012; 130: 280-291 DOI: 10.1001/archophthalmol.2011.343.
  • 7 Arbelaez MC, Versaci F, Vestri G. et al. Use of a support vector machine for keratoconus and subclinical keratoconus detection by topographic and tomographic data. Ophthalmology 2012; 119: 2231-2238 DOI: 10.1016/j.ophtha.2012.06.005.
  • 8 Kovacs I, Mihaltz K, Kranitz K. et al. Accuracy of machine learning classifiers using bilateral data from a Scheimpflug camera for identifying eyes with preclinical signs of keratoconus. J Cataract Refract Surg 2016; 42: 275-283 DOI: 10.1016/j.jcrs.2015.09.020.
  • 9 Zander D, Grewing V, Glatz A. et al. Predicting Edema Resolution After Descemet Membrane Endothelial Keratoplasty for Fuchs Dystrophy Using Scheimpflug Tomography. JAMA Ophthalmol 2021; 139: 423-430 DOI: 10.1001/jamaophthalmol.2020.6994.
  • 10 Sun SY, Wacker K, Baratz KH. et al. Determining Subclinical Edema in Fuchs Endothelial Corneal Dystrophy: Revised Classification using Scheimpflug Tomography for Preoperative Assessment. Ophthalmology 2019; 126: 195-204 DOI: 10.1016/j.ophtha.2018.07.005.
  • 11 Eleiwa T, Elsawy A, Tolba M. et al. Diagnostic Performance of 3-Dimensional Thickness of the Endothelium-Descemet Complex in Fuchsʼ Endothelial Cell Corneal Dystrophy. Ophthalmology 2020; 127: 874-887 DOI: 10.1016/j.ophtha.2020.01.021.
  • 12 Dos Santos VA, Schmetterer L, Stegmann H. et al. CorneaNet: fast segmentation of cornea OCT scans of healthy and keratoconic eyes using deep learning. Biomed Opt Express 2019; 10: 622-641 DOI: 10.1364/BOE.10.000622.
  • 13 Treder M, Lauermann JL, Alnawaiseh M. et al. Using Deep Learning in Automated Detection of Graft Detachment in Descemet Membrane Endothelial Keratoplasty: A Pilot Study. Cornea 2019; 38: 157-161 DOI: 10.1097/ICO.0000000000001776.
  • 14 Heslinga FG, Alberti M, Pluim JPW. et al. Quantifying Graft Detachment after Descemetʼs Membrane Endothelial Keratoplasty with Deep Convolutional Neural Networks. Transl Vis Sci Technol 2020; 9: 48 DOI: 10.1167/tvst.9.2.48.
  • 15 Fritz M, Grewing V, Gruber M. et al. Rotational alignment of corneal endothelial grafts and risk of graft detachment after Descemet membrane endothelial keratoplasty: a double-masked pseudo-randomized study. Acta Ophthalmol 2021; 99: e1334-e1339 DOI: 10.1111/aos.14849.
  • 16 Wacker K, Fritz M, Grewing V. et al. Vertical Scrolling Axis of Corneal Endothelial Grafts for Descemet Membrane Endothelial Keratoplasty. Cornea 2021; 40: 497-501 DOI: 10.1097/ico.0000000000002583.
  • 17 Ronneberger O, Fischer P, Brox T. U-Net: Convolutional Networks for Biomedical Image Segmentation. In: Navab N, Hornegger J, Wells WM, Frangi AF. eds. Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015. Cham: Springer International Publishing; 2015: 234-241
  • 18 Kladny AS, Zander DB, Lieberum JL. et al. Graft detachment after Descemet membrane endothelial keratoplasty with and without cataract surgery. Ophthalmol Sci 2022; 2: 100194 DOI: 10.1016/j.xops.2022.100194.
  • 19 Kladny AS, Zander D, Glatz A. et al. Einfluss der Transplantatanlage nach Descemet Membrane Endothelial Keratoplasty auf die Endothelzelldichte: Langzeitergebnisse prospektiver Kohortenstudien. Präsentation beim jährlichen Kongress der Deutschen Ophthalmologischen Gesellschaft in Berlin, 01102022.
  • 20 McCarey BE, Edelhauser HF, Lynn MJ. Review of corneal endothelial specular microscopy for FDA clinical trials of refractive procedures, surgical devices, and new intraocular drugs and solutions. Cornea 2008; 27: 1-16 DOI: 10.1097/ICO.0b013e31815892da.
  • 21 Daniel MC, Atzrodt L, Bucher F. et al. Automated segmentation of the corneal endothelium in a large set of ‚real-world‘ specular microscopy images using the U-Net architecture. Sci Rep 2019; 9: 4752 DOI: 10.1038/s41598-019-41034-2.
  • 22 Kladny AS, Glatz A, Lieberum JL. et al. Supine positioning for graft attachment after Descemet membrane endothelial keratoplasty: a randomized-controlled trial. Am J Ophthal 2023; DOI: 10.1016/j.ajo.2023.11.021.