CC BY-NC-ND 4.0 · Planta Med 2024; 90(07/08): 641-650
DOI: 10.1055/a-2225-8314
Natural Product Chemistry and Analytical Studies
Original Papers

Structural Characterization, and Antioxidative and Anti-inflammatory Activities of Phylloxanthobilins in Tropaeolum majus, a Plant with Relevance in Phytomedicine[ # ]

Patricia Frei
1   Department of Pharmacy, Pharmaceutical Biology, Ludwig-Maximilian University of Munich, Germany
,
Christian Nadegger
2   Institute of Organic Chemistry, University of Innsbruck, Austria
,
Angelika M. Vollmar
1   Department of Pharmacy, Pharmaceutical Biology, Ludwig-Maximilian University of Munich, Germany
,
Thomas Müller
2   Institute of Organic Chemistry, University of Innsbruck, Austria
,
1   Department of Pharmacy, Pharmaceutical Biology, Ludwig-Maximilian University of Munich, Germany
3   Institute of Pharmacy, Department of Pharmacognosy, University of Innsbruck, Austria
› Author Affiliations
S. M. gratefully acknowledges funding from the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation; Project-ID 448289381).

Abstract

Tropaeolum majus (garden nasturtium) is a plant with relevance in phytomedicine, appreciated not only for its pharmaceutical activities, but also for its beautiful leaves and flowers. Here, we investigated the phytochemical composition of senescent nasturtium leaves. Indeed, we identified yellow chlorophyll catabolites, also termed phylloxanthobilins, which we show to contribute to the bright yellow color of the leaves in the autumn season. Moreover, we isolated and characterized the phylloxanthobilins from T. majus, and report the identification of a pyro-phylloxanthobilin, so far only accessible by chemical synthesis. We show that the phylloxanthobilins contribute to bioactivities of T. majus by displaying strong anti-oxidative effects in vitro and in cellulo, and anti-inflammatory effects as assessed by COX-1 and COX-2 enzyme inhibition, similar to other bioactive ingredients of T. majus, isoquercitrin, and chlorogenic acid. Hence, phylloxanthobilins could play a role in the efficacy of T. majus in the treatment of urinary tract infections, an established indication of T. majus. With the results shown in this study, we aid in the completion of the phytochemical profile of T. majus by identifying additional bioactive natural products as relevant components of this medicinal plant.

# This work is dedicated to Professors Rudolf Bauer, Chlodwig Franz, Brigitte Kopp, and Hermann Stuppner for their invaluable contributions and commitment to Austrian Pharmacognosy.


Supporting Information



Publication History

Received: 28 June 2023

Accepted after revision: 28 November 2023

Article published online:
06 June 2024

© 2024. The Author(s). This is an open access article published by Thieme under the terms of the Creative Commons Attribution-NonDerivative-NonCommercial License, permitting copying and reproduction so long as the original work is given appropriate credit. Contents may not be used for commecial purposes, or adapted, remixed, transformed or built upon. (https://creativecommons.org/licenses/by-nc-nd/4.0/)

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

  • 1 Wang P, Karg CA, Frey N, Frädrich J, Vollmar AM, Moser S. Phyllobilins as a challenging diverse natural product class: Exploration of pharmacological activities. Arch Pharm 2021; 354: e2100061
  • 2 Kräutler B. Phyllobilins – The abundant bilin-type tetrapyrrolic catabolites of the green plant pigment chlorophyll. Chem Soc Rev 2014; 43: 6227-6238
  • 3 Moser S, Ulrich M, Müller T, Kräutler B. A yellow chlorophyll catabolite is a pigment of the fall colours. Photochem Photobiol Sci 2008; 7: 1577-1581
  • 4 Vergeiner C, Ulrich M, Li C, Liu X, Müller T, Kräutler B. Stereo- and regioselective phyllobilane oxidation in leaf homogenates of the peace lily (Spathiphyllum wallisii): hypothetical endogenous path to yellow chlorophyll catabolites. Chem Eur J 2015; 21: 136-149
  • 5 Erhart T, Vergeiner S, Kreutz C, Kräutler B, Müller T. Chlorophyll breakdown in a fern – Discovery of carbon-skeleton rearranged phyllobilin isomers. Angew Chem Int Ed 2018; 57: 14937
  • 6 Li C, Wurst K, Berghold J, Podewitz M, Liedl KR, Kräutler B. Pyro-phyllobilins: Elusive chlorophyll catabolites lacking a critical carboxylate function of the natural chlorophylls. Chem Eur J 2018; 24: 2987-2998
  • 7 Moser S, Erhart T, Neuhauser S, Kräutler B. Phyllobilins from senescence-associated chlorophyll breakdown in the leaves of Basil (Ocimum basilicum) show increased abundance upon herbivore attack. J Agric Food Chem 2020; 68: 7132-7142
  • 8 Mathesius U. Flavonoid functions in plants and their interactions with other organisms. Plants (Basel) 2018; 7: 30
  • 9 Faizal A, Geelen D. Saponins and their role in biological processes in plants. Phytochem Rev 2013; 12: 877-893
  • 10 Dixon RA. Natural products and plant disease resistance. Nature 2001; 411: 843-847
  • 11 Hayes M, Ferruzzi MG. Update on the bioavailability and chemopreventative mechanisms of dietary chlorophyll derivatives. Nutr Res 2020; 81: 19-37
  • 12 Vaňková K, Marková I, Jašprová J, Dvořák A, Subhanová I, Zelenka J, Novosádová I, Rasl J, Vomastek T, Sobotka R, Muchová L, Vítek L. Chlorophyll-mediated changes in the redox status of pancreatic cancer cells are associated with its anticancer effects. Oxid Med Cell Longev 2018; 2018: 4069167
  • 13 Karg CA, Taniguchi M, Lindsey JS, Moser S. Phyllobilins – Bioactive natural products derived from chlorophyll – Plant origins, structures, absorption spectra, and biomedical properties. Planta Med 2023; 89: 637-662
  • 14 Karg CA, Wang P, Vollmar AM, Moser S. Re-opening the stage for Echinacea research – Characterization of phylloxanthobilins as a novel anti-oxidative compound class in Echinacea purpurea . Phytomedicine 2019; 60: 152969
  • 15 Karg CA, Doppler C, Schilling C, Jakobs F, Dal Colle MCS, Frey N, Bernhard D, Vollmar AM, Moser S. A yellow chlorophyll catabolite in leaves of Urtica dioica L.: An overlooked phytochemical that contributes to health benefits of stinging nettle. Food Chem 2021; 359: 129906
  • 16 Berg D, Youdim MB, Riederer P. Redox imbalance. Cell Tissue Res 2004; 318: 201-213
  • 17 Stocker R, John F, Keaney J. Role of oxidative modifications in atherosclerosis. Physiol Rev 2004; 84: 1381-1478
  • 18 Behl T, Kaur I, Kotwani A. Implication of oxidative stress in progression of diabetic retinopathy. Surv Ophthalmol 2016; 61: 187-196
  • 19 Toledo-Ibelles P, Mas-Oliva J. Antioxidants in the fight against atherosclerosis: Is this a dead end?. Curr Atheroscler Rep 2018; 20: 36
  • 20 Karg CA, Parráková L, Fuchs D, Schennach H, Kräutler B, Moser S, Gostner JM. A chlorophyll-derived phylloxanthobilin is a potent antioxidant that modulates immunometabolism in human PBMC. Antioxidants (Basel) 2022; 11: 2056
  • 21 Jakubczyk K, Janda K, Watychowicz K, Aukasiak J, Wolska J. Garden nasturtium (Tropaeolum majus L.) – a source of mineral elements and bioactive compounds. Rocz Panstw Zakl Hig 2018; 69: 119-126
  • 22 Gasparotto Junior A, Prando TB, Leme Tdos S, Gasparotto FM, Lourenço EL, Rattmann YD, Da Silva-Santos JE, Kassuya CA, Marques MC. Mechanisms underlying the diuretic effects of Tropaeolum majus L. extracts and its main component isoquercitrin. J Ethnopharmacol 2012; 141: 501-509
  • 23 Gasparotto Junior A, Gasparotto FM, Lourenço EL, Crestani S, Stefanello ME, Salvador MJ, da Silva-Santos JE, Marques MC, Kassuya CA. Antihypertensive effects of isoquercitrin and extracts from Tropaeolum majus L.: evidence for the inhibition of angiotensin converting enzyme. J Ethnopharmacol 2011; 134: 363-372
  • 24 Kleinwächter M, Schnug E, Selmar D. The glucosinolate-myrosinase system in nasturtium (Tropaeolum majus L.): variability of biochemical parameters and screening for clones feasible for pharmaceutical utilization. J Agric Food Chem 2008; 56: 11165-11170
  • 25 Gasparotto jr. A, Boffo MA, Lourenço EL, Stefanello ME, Kassuya CA, Marques MC. Natriuretic and diuretic effects of Tropaeolum majus (Tropaeolaceae) in rats. J Ethnopharmacol 2009; 122: 517-522
  • 26 Bazylko A, Granica S, Filipek A, Piwowarski J, Stefańska J, Osińska E, Kiss AK. Comparison of antioxidant, anti-inflammatory, antimicrobial activity and chemical composition of aqueous and hydroethanolic extracts of the herb of Tropaeolum majus L. Ind Crops Prod 2013; 50: 88-94
  • 27 Wakana D, Kato H, Momose T, Sasaki N, Ozeki Y, Goda Y. NMR-based characterization of a novel yellow chlorophyll catabolite, Ed-YCC, isolated from Egeria densa . Tetrahedron Lett 2014; 55: 2982-2985
  • 28 Müller T, Vergeiner S, Kräutler B. Structure elucidation of chlorophyll catabolites (phyllobilins) by ESI-mass spectrometry – pseudo-molecular ions and fragmentation analysis of a nonfluorescent chlorophyll catabolite (NCC). Int J Mass Spectrom 2014; 365 – 366: 48-55
  • 29 Berghold J, Breuker K, Oberhuber M, Hörtensteiner S, Kräutler B. Chlorophyll breakdown in spinach: On the structure of five nonfluorescent chlorophyll catabolites. Photosynth Res 2002; 74: 109-119
  • 30 Moser S, Müller T, Holzinger A, Lütz C, Kräutler B. Structures of chlorophyll catabolites in bananas (Musa acuminata) reveal a split path of chlorophyll breakdown in a ripening fruit. Chemistry 2012; 18: 10873-10885
  • 31 Kuai B, Chen J, Hörtensteiner S. The biochemistry and molecular biology of chlorophyll breakdown. J Exp Bot 2017; 69: 751-767
  • 32 Liu J, Wang H, Manicke NE, Lin JM, Cooks RG, Ouyang Z. Development, characterization, and application of paper spray ionization. Anal Chem 2010; 82: 2463-2471
  • 33 Liu J, Wang H, Cooks RG, Ouyang Z. Leaf spray: direct chemical analysis of plant material and living plants by mass spectrometry. Anal Chem 2011; 83: 7608-7613
  • 34 Apak R, Güçlü K, Demirata B, Özyürek M, Çelik SE, Bektaşoğlu B, Berker KI, Özyurt D. Comparative evaluation of various total antioxidant capacity assays applied to phenolic compounds with the CUPRAC assay. Molecules 2007; 12: 1496-1547
  • 35 Li X, Jiang Q, Wang T, Liu J, Chen D. Comparison of the antioxidant effects of quercitrin and isoquercitrin: Understanding the role of the 6″-OH group. Molecules 2016; 21: 1246
  • 36 Conrad A, Biehler D, Nobis T, Richter H, Engels I, Biehler K, Frank U. Broad spectrum antibacterial activity of a mixture of isothiocyanates from nasturtium (Tropaeoli majoris herba) and horseradish (Armoraciae rusticanae radix). Drug Res (Stuttg) 2013; 63: 65-68
  • 37 Lee EH, Park HJ, Jung HY, Kang IK, Kim BO, Cho YJ. Isoquercitrin isolated from newly bred Green ball apple peel in lipopolysaccharide-stimulated macrophage regulates NF-κB inflammatory pathways and cytokines. 3 Biotech 2022; 12: 100
  • 38 Gerhäuser C. 68 – Phenolic Beer Compounds to Prevent Cancer. In: Preedy VR. editor Beer in Health and Disease Prevention. San Diego: Academic Press; 2009: 669-684
  • 39 Strohalm M, Kavan D, Novák P, Volný M, Havlícek V. mMass 3: A cross-platform software environment for precise analysis of mass spectrometric data. Anal Chem 2010; 82: 4648-4651
  • 40 Moser S, Scherzer G, Kräutler B. On the nature of isomeric nonfluorescent chlorophyll catabolites in leaves and fruit – A study with a ubiquitous phylloleucobilin and its main isomerization product. Chem Biodivers 2017; 14: e1700368
  • 41 Karg CA, Wang P, Kluibenschedl F, Müller T, Allmendinger L, Vollmar AM, Moser S. phylloxanthobilins are abundant linear tetrapyrroles from chlorophyll breakdown with activities against cancer cells. European J Org Chem 2020; 2020: 4499-4509