Subscribe to RSS
DOI: 10.1055/a-2227-1020
Pd-Catalyzed Oxidative Functionalization of Alkenes, Arenes, and 1,3-Dienes Using Molecular Oxygen as the Terminal Oxidant
This work was supported in part by the ‘Development of Innovative Catalytic Processes for Organosilicon Functional Materials’ project (PL: Kazuhiko Sato) from the New Energy and Industrial Technology Development Organization (NEDO). This research was also supported by the Kansai University Grant-in-Aid for progress of research in graduate course, 2023.
Abstract
This Account presents palladium-complex-catalyzed oxidative couplings mainly developed by the author’s group, including oxidative amination and silylation of terminal alkenes, direct oxidative arylation of aromatic compounds, and oxidative difunctionalization of 1,3-dienes. The catalytic cycles in these representative reactions feature re-oxidation of the palladium species with molecular oxygen as the terminal oxidant. Varying the combination of palladium catalyst and re-oxidant enables the formation of a variety of bonds through dehydrogenative cross-coupling reactions.
1 Introduction
2 Oxidative Amination of Terminal Alkenes
3 Direct Oxidative Arylation of Aromatic Compounds
4 Oxidative Silylation of Terminal Alkenes
5 Oxidative Difunctionalization of 1,3-Dienes
6 Conclusions and Perspectives
Publication History
Received: 17 November 2023
Accepted after revision: 12 December 2023
Accepted Manuscript online:
12 December 2023
Article published online:
19 January 2024
© 2024. Thieme. All rights reserved
Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany
-
References
- 1 Lei A, Shi W, Liu C, Liu W, Zhang H, He C. Oxidative Cross-Coupling Reactions . Wiley; Weinheim: 2016
- 2 Lei A. Transition Metal Catalyzed Oxidative Cross-Coupling Reactions. Springer Berlin Heidelberg; Berlin: 2019
- 3 Tabaru K, Obora Y. Eur. J. Org. Chem. 2022; e202200618
- 4 Funes-Ardoiz I, Maseras F. ACS Catal. 2018; 8: 1161
- 5 Smidt J, Hafner W, Jira R, Sedlmeier J, Sieber R, Rüttinger R, Kojer H. Angew. Chem. 1959; 71: 176
- 6 Liu J, Guðmundsson A, Bäckvall J.-E. Angew. Chem. Int. Ed. 2021; 60: 15686
- 7 Yang Y, Lan J, You J. Chem. Rev. 2017; 117: 8787
- 8 Liu C, Zhang H, Shi W, Lei A. Chem. Rev. 2011; 111: 1780
- 9 Wang D, Weinstein AB, White PB, Stahl SS. Chem. Rev. 2018; 118: 2636
- 10 Li X, Jiao N. Chin. J. Chem. 2017; 35: 1349
- 11 Miura M, Satoh T, Hirano K. Bull. Chem. Soc. Jpn. 2014; 87: 751
- 12 Hirano K, Miura M. Chem. Lett. 2015; 44: 868
- 13 Liu C, Yuan J, Gao M, Tang S, Li W, Shi R, Lei A. Chem. Rev. 2015; 115: 12138
- 14 Hirano K, Miura M. Chem. Sci. 2018; 9: 22
- 15 Green Oxidation in Organic Synthesis . Jiao N, Stahl SS. John Wiley and Sons; Hoboken: 2019
- 16 Tang C, Qiu X, Cheng Z, Jiao N. Chem. Soc. Rev. 2021; 50: 8067
- 17 Lyons TW, Sanford MS. Chem. Rev. 2010; 110: 1147
- 18 Le Bras J, Muzart J. Chem. Rev. 2011; 111: 1170
- 19 He J, Wasa M, Chan KS. L, Shao Q, Yu J.-Q. Chem. Rev. 2017; 117: 8754
- 20 Barboza AA, Dantas JA, Costa MO, Chiavegatti A, Jardim GA. de M, Ferreira MA. B. Synthesis 2022; 54: 2081
- 21 Muzart J. Adv. Synth. Catal. 2022; 364: 2268
- 22 Le Bras J, Muzart J. Adv. Synth. Catal. 2023; 365: 3727
- 23 Louillat M.-L, Patureau FW. Chem. Soc. Rev. 2014; 43: 901
- 24 Kotov V, Scarborough CC, Stahl SS. Inorg. Chem. 2007; 46: 1910
- 25 Bozell JJ, Hegedus LS. J. Org. Chem. 1981; 46: 2561
- 26 Timokhin VI, Anastasi NR, Stahl SS. J. Am. Chem. Soc. 2003; 125: 12996
- 27 Timokhin VI, Stahl SS. J. Am. Chem. Soc. 2005; 127: 17888
- 28 Pattillo CC, Strambeanu II, Calleja P, Vermeulen NA, Mizuno T, White MC. J. Am. Chem. Soc. 2016; 138: 1265
- 29 Kohler DG, Gockel SN, Kennemur JL, Waller PJ, Hull KL. Nat. Chem. 2018; 10: 333
- 30 Jin Y, Jing Y, Li C, Li M, Wu W, Ke Z, Jiang H. Nat. Chem. 2022; 14: 1118
- 31 Li M, Jin Y, Chen Y, Wu W, Jiang H. J. Am. Chem. Soc. 2023; 145: 9448
- 32 Obora Y, Shimizu Y, Ishii Y. Org. Lett. 2009; 11: 5058
- 33 Shimizu Y, Obora Y, Ishii Y. Org. Lett. 2010; 12: 1372
- 34 Mizuta Y, Yasuda K, Obora Y. J. Org. Chem. 2013; 78: 6332
- 35 Beletskaya IP, Cheprakov AV. Chem. Rev. 2000; 100: 3009
- 36 Biffis A, Centomo P, Del Zotto A, Zecca M. Chem. Rev. 2018; 118: 2249
- 37 Nakashima Y, Hirata G, Sheppard TD, Nishikata T. Asian J. Org. Chem. 2020; 9: 480
- 38 Reznikov AN, Ashatkina MA, Klimochkin YN. Org. Biomol. Chem. 2021; 19: 5673
- 39 Chen X, Engle KM, Wang D, Yu J. Angew. Chem. Int. Ed. 2009; 48: 5094
- 40 Zhou L, Lu W. Eur. Chem. J. 2014; 20: 634
- 41 Kaltenberger S, van Gemmeren M. Acc. Chem. Res. 2023; 56: 2459
- 42 Moritani I, Fujiwara Y. Tetrahedron Lett. 1967; 8: 1119
- 43 Fujiwara Y, Moritani I, Danno S, Asano R, Teranishi S. J. Am. Chem. Soc. 1969; 91: 7166
- 44 Jia C, Kitamura T, Fujiwara Y. Acc. Chem. Res. 2001; 34: 633
- 45 Obora Y, Okabe Y, Ishii Y. Org. Biomol. Chem. 2010; 8: 4071
- 46 Mizuta Y, Obora Y, Shimizu Y, Ishii Y. ChemCatChem 2012; 4: 187
- 47 Harada S, Yano H, Obora Y. ChemCatChem 2013; 5: 121
- 48 Yus M, González-Gómez JC, Foubelo F. Chem. Rev. 2011; 111: 7774
- 49 Hosomi A, Endo M, Sakurai H. Chem. Lett. 1976; 5: 941
- 50 Hosomi A, Sakurai H. Tetrahedron Lett. 1976; 17: 1295
- 51 Nakai S, Matsui M, Shimizu Y, Adachi Y, Obora Y. J. Org. Chem. 2015; 80: 7317
- 52 Jensen KH, Sigman MS. Org. Biomol. Chem. 2008; 6: 4083
- 53 Yin G, Mu X, Liu G. Acc. Chem. Res. 2016; 49: 2413
- 54 Li G, Huo X, Jiang X, Zhang W. Chem. Soc. Rev. 2020; 49: 2060
- 55 Morrow NL. Environ. Health Perspect. 1990; 86: 7
- 56 Qi Y, Liu Z, Liu S, Cui L, Dai Q, He J, Dong W, Bai C. Catalysts 2019; 9: 97
- 57 Wu Z, Zhang W. Chin. J. Org. Chem. 2017; 37: 2250
- 58 Xiong Y, Sun Y, Zhang G. Tetrahedron Lett. 2018; 59: 347
- 59 Wu X, Gong L.-Z. Synthesis 2019; 51: 122
- 60 Perry GJ. P, Jia T, Procter DJ. ACS Catal. 2020; 10: 1485
- 61 Torii K, Kawakubo A, Lin X, Fujihara T, Yajima T, Obora Y. Chem. Eur. J. 2021; 27: 4888
- 62 Torii K, Tabaru K, Obora Y. Org. Lett. 2021; 23: 4898
- 63 Salazar CA, Flesch KN, Haines BE, Zhou PS, Musaev DG, Stahl SS. Science 2020; 370: 1454