Synlett 2024; 35(16): 1861-1871 DOI: 10.1055/a-2227-1020
Pd-Catalyzed Oxidative Functionalization of Alkenes, Arenes, and 1,3-Dienes Using Molecular Oxygen as the Terminal Oxidant
,
This work was supported in part by the ‘Development of Innovative Catalytic Processes for Organosilicon Functional Materials’ project (PL: Kazuhiko Sato) from the New Energy and Industrial Technology Development Organization (NEDO). This research was also supported by the Kansai University Grant-in-Aid for progress of research in graduate course, 2023.
Abstract
This Account presents palladium-complex-catalyzed oxidative couplings mainly developed by the author’s group, including oxidative amination and silylation of terminal alkenes, direct oxidative arylation of aromatic compounds, and oxidative difunctionalization of 1,3-dienes. The catalytic cycles in these representative reactions feature re-oxidation of the palladium species with molecular oxygen as the terminal oxidant. Varying the combination of palladium catalyst and re-oxidant enables the formation of a variety of bonds through dehydrogenative cross-coupling reactions.
1 Introduction
2 Oxidative Amination of Terminal Alkenes
3 Direct Oxidative Arylation of Aromatic Compounds
4 Oxidative Silylation of Terminal Alkenes
5 Oxidative Difunctionalization of 1,3-Dienes
6 Conclusions and Perspectives
Key words
palladium -
oxidative coupling -
alkene -
1,3-diene -
re-oxidation -
aerobic oxidation
Publikationsverlauf
Eingereicht: 17. November 2023
Angenommen nach Revision: 12. Dezember 2023
Accepted Manuscript online: 12. Dezember 2023
Artikel online veröffentlicht: 19. Januar 2024
© 2024. Thieme. All rights reserved
Georg Thieme Verlag KG Rüdigerstraße 14, 70469 Stuttgart, Germany
References
1
Lei A,
Shi W,
Liu C,
Liu W,
Zhang H,
He C.
Oxidative Cross-Coupling Reactions
. Wiley; Weinheim: 2016
2
Lei A.
Transition Metal Catalyzed Oxidative Cross-Coupling Reactions. Springer Berlin Heidelberg; Berlin: 2019
3
Tabaru K,
Obora Y.
Eur. J. Org. Chem. 2022; e202200618
4
Funes-Ardoiz I,
Maseras F.
ACS Catal. 2018; 8: 1161
5
Smidt J,
Hafner W,
Jira R,
Sedlmeier J,
Sieber R,
Rüttinger R,
Kojer H.
Angew. Chem. 1959; 71: 176
6
Liu J,
Guðmundsson A,
Bäckvall J.-E.
Angew. Chem. Int. Ed. 2021; 60: 15686
7
Yang Y,
Lan J,
You J.
Chem. Rev. 2017; 117: 8787
8
Liu C,
Zhang H,
Shi W,
Lei A.
Chem. Rev. 2011; 111: 1780
9
Wang D,
Weinstein AB,
White PB,
Stahl SS.
Chem. Rev. 2018; 118: 2636
10
Li X,
Jiao N.
Chin. J. Chem. 2017; 35: 1349
11
Miura M,
Satoh T,
Hirano K.
Bull. Chem. Soc. Jpn. 2014; 87: 751
12
Hirano K,
Miura M.
Chem. Lett. 2015; 44: 868
13
Liu C,
Yuan J,
Gao M,
Tang S,
Li W,
Shi R,
Lei A.
Chem. Rev. 2015; 115: 12138
14
Hirano K,
Miura M.
Chem. Sci. 2018; 9: 22
15
Green Oxidation in Organic Synthesis
.
Jiao N,
Stahl SS.
John Wiley and Sons; Hoboken: 2019
16
Tang C,
Qiu X,
Cheng Z,
Jiao N.
Chem. Soc. Rev. 2021; 50: 8067
17
Lyons TW,
Sanford MS.
Chem. Rev. 2010; 110: 1147
18
Le Bras J,
Muzart J.
Chem. Rev. 2011; 111: 1170
19
He J,
Wasa M,
Chan KS. L,
Shao Q,
Yu J.-Q.
Chem. Rev. 2017; 117: 8754
20
Barboza AA,
Dantas JA,
Costa MO,
Chiavegatti A,
Jardim GA. de M,
Ferreira MA. B.
Synthesis 2022; 54: 2081
21
Muzart J.
Adv. Synth. Catal. 2022; 364: 2268
22
Le Bras J,
Muzart J.
Adv. Synth. Catal. 2023; 365: 3727
23
Louillat M.-L,
Patureau FW.
Chem. Soc. Rev. 2014; 43: 901
24
Kotov V,
Scarborough CC,
Stahl SS.
Inorg. Chem. 2007; 46: 1910
25
Bozell JJ,
Hegedus LS.
J. Org. Chem. 1981; 46: 2561
26
Timokhin VI,
Anastasi NR,
Stahl SS.
J. Am. Chem. Soc. 2003; 125: 12996
27
Timokhin VI,
Stahl SS.
J. Am. Chem. Soc. 2005; 127: 17888
28
Pattillo CC,
Strambeanu II,
Calleja P,
Vermeulen NA,
Mizuno T,
White MC.
J. Am. Chem. Soc. 2016; 138: 1265
29
Kohler DG,
Gockel SN,
Kennemur JL,
Waller PJ,
Hull KL.
Nat. Chem. 2018; 10: 333
30
Jin Y,
Jing Y,
Li C,
Li M,
Wu W,
Ke Z,
Jiang H.
Nat. Chem. 2022; 14: 1118
31
Li M,
Jin Y,
Chen Y,
Wu W,
Jiang H.
J. Am. Chem. Soc. 2023; 145: 9448
32
Obora Y,
Shimizu Y,
Ishii Y.
Org. Lett. 2009; 11: 5058
33
Shimizu Y,
Obora Y,
Ishii Y.
Org. Lett. 2010; 12: 1372
34
Mizuta Y,
Yasuda K,
Obora Y.
J. Org. Chem. 2013; 78: 6332
35
Beletskaya IP,
Cheprakov AV.
Chem. Rev. 2000; 100: 3009
36
Biffis A,
Centomo P,
Del Zotto A,
Zecca M.
Chem. Rev. 2018; 118: 2249
37
Nakashima Y,
Hirata G,
Sheppard TD,
Nishikata T.
Asian J. Org. Chem. 2020; 9: 480
38
Reznikov AN,
Ashatkina MA,
Klimochkin YN.
Org. Biomol. Chem. 2021; 19: 5673
39
Chen X,
Engle KM,
Wang D,
Yu J.
Angew. Chem. Int. Ed. 2009; 48: 5094
40
Zhou L,
Lu W.
Eur. Chem. J. 2014; 20: 634
41
Kaltenberger S,
van Gemmeren M.
Acc. Chem. Res. 2023; 56: 2459
42
Moritani I,
Fujiwara Y.
Tetrahedron Lett. 1967; 8: 1119
43
Fujiwara Y,
Moritani I,
Danno S,
Asano R,
Teranishi S.
J. Am. Chem. Soc. 1969; 91: 7166
44
Jia C,
Kitamura T,
Fujiwara Y.
Acc. Chem. Res. 2001; 34: 633
45
Obora Y,
Okabe Y,
Ishii Y.
Org. Biomol. Chem. 2010; 8: 4071
46
Mizuta Y,
Obora Y,
Shimizu Y,
Ishii Y.
ChemCatChem 2012; 4: 187
47
Harada S,
Yano H,
Obora Y.
ChemCatChem 2013; 5: 121
48
Yus M,
González-Gómez JC,
Foubelo F.
Chem. Rev. 2011; 111: 7774
49
Hosomi A,
Endo M,
Sakurai H.
Chem. Lett. 1976; 5: 941
50
Hosomi A,
Sakurai H.
Tetrahedron Lett. 1976; 17: 1295
51
Nakai S,
Matsui M,
Shimizu Y,
Adachi Y,
Obora Y.
J. Org. Chem. 2015; 80: 7317
52
Jensen KH,
Sigman MS.
Org. Biomol. Chem. 2008; 6: 4083
53
Yin G,
Mu X,
Liu G.
Acc. Chem. Res. 2016; 49: 2413
54
Li G,
Huo X,
Jiang X,
Zhang W.
Chem. Soc. Rev. 2020; 49: 2060
55
Morrow NL.
Environ. Health Perspect. 1990; 86: 7
56
Qi Y,
Liu Z,
Liu S,
Cui L,
Dai Q,
He J,
Dong W,
Bai C.
Catalysts 2019; 9: 97
57
Wu Z,
Zhang W.
Chin. J. Org. Chem. 2017; 37: 2250
58
Xiong Y,
Sun Y,
Zhang G.
Tetrahedron Lett. 2018; 59: 347
59
Wu X,
Gong L.-Z.
Synthesis 2019; 51: 122
60
Perry GJ. P,
Jia T,
Procter DJ.
ACS Catal. 2020; 10: 1485
61
Torii K,
Kawakubo A,
Lin X,
Fujihara T,
Yajima T,
Obora Y.
Chem. Eur. J. 2021; 27: 4888
62
Torii K,
Tabaru K,
Obora Y.
Org. Lett. 2021; 23: 4898
63
Salazar CA,
Flesch KN,
Haines BE,
Zhou PS,
Musaev DG,
Stahl SS.
Science 2020; 370: 1454