CC BY 4.0 · SynOpen 2024; 08(01): 47-50
DOI: 10.1055/a-2231-3108
letter

tert-Butoxide-Mediated Protodeformylative Decarbonylation of α-Quaternary Homobenzaldehydes

a   Department of Chemistry and Biochemistry, Santa Clara University, 500 El Camino Real, Santa Clara, CA 95053, USA
,
Xiao Cai
b   Department of Chemistry and Chemical Biology, University of California, Merced, 5200 N. Lake Road, Merced, CA 95343, USA
,
Ritter V. Amsbaugh
a   Department of Chemistry and Biochemistry, Santa Clara University, 500 El Camino Real, Santa Clara, CA 95053, USA
,
Lauren J. Drake
a   Department of Chemistry and Biochemistry, Santa Clara University, 500 El Camino Real, Santa Clara, CA 95053, USA
,
Ravi M. A. Kotamraju
a   Department of Chemistry and Biochemistry, Santa Clara University, 500 El Camino Real, Santa Clara, CA 95053, USA
,
Nicholas Javier C. Licauco
a   Department of Chemistry and Biochemistry, Santa Clara University, 500 El Camino Real, Santa Clara, CA 95053, USA
› Author Affiliations
This research was sponsored by Santa Clara University and the University of California, Merced. L.J.D. was sponsored by a summer research award from Dr. Richard Bastiani.


Abstract

tert-Butoxide mediates the Haller–Bauer-type (protodeformylative) decarbonylation of readily accessed α-quaternary homobenzaldehydes and related compounds at room temperature, generating cumene products. Both geminal dialkyl and geminal diaryl substituents are tolerated. gem-Dimethyls are sufficient for decarbonylation of polycyclic arenyl substrates whereas monocyclic aromatic homobenzaldehydes require cyclic gem-dialkyls or gem-diaryls for significant decarbonylation.

Supporting Information



Publication History

Received: 05 September 2023

Accepted after revision: 04 December 2023

Accepted Manuscript online:
18 December 2023

Article published online:
19 January 2024

© 2024. The Author(s). This is an open access article published by Thieme under the terms of the Creative Commons Attribution License, permitting copying and reproduction so long as the original work is given appropriate credit. Contents may not be used for commercial purposes or adapted, remixed, transformed or built upon. (https://creativecommons.org/licenses/by/4.0/)

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References and Notes


    • For biochemical studies, see:
    • 1a Sen K, Hackett JC. J. Phys. Chem. B 2009; 113: 8170
    • 1b Sen K, Hackett JC. J. Am. Chem. Soc. 2010; 132: 10293
    • 1c Patra T, Manna S, Maiti D. Angew. Chem. Int. Ed. 2011; 50: 12140

      For decarbonylations towards biofuel conversion, see:
    • 2a Monrad RN, Madsen R. J. Org. Chem. 2007; 72: 9782
    • 2b Geilen FM. A, vom Stein T, Engendahl B, Winterle S, Liauw MA, Klankermayer J, Leitner W. Angew. Chem. Int. Ed. 2011; 50: 6831
    • 2c Huang Y.-B, Yang Z, Chen M.-Y, Dai J.-J, Guo Q.-X, Fu Y. ChemSusChem 2013; 6: 1348
    • 2d Jastrzebski R, Constant S, Lancefield CS, Westwood NJ, Weckhuysen BM, Bruijnincx PC. A. ChemSusChem 2016; 9: 2074

      For the original Tsuji–Wilkinson reports, see:
    • 3a Tsuji J, Ohno K. Tetrahedron Lett. 1965; 3969
    • 3b Osborn JA, Jardine FH, Wilkinson G. J. Chem. Soc. A 1966; 1711
    • 3c Ohno K, Tsuji J. J. Am. Chem. Soc. 1968; 90: 99

    • For reviews, see:
    • 3d Tsuji J, Ohno K. Synthesis 1969; 157
    • 3e Jardine FH. Prog. Inorg. Chem. 1981; 28: 63

      Selected examples:
    • 4a Hu P, Snyder SA. J. Am. Chem. Soc. 2017; 139: 5007
    • 4b Ziegler FE, Belema M. J. Org. Chem. 1997; 62: 1083
    • 4c Kato T, Hoshikawa M, Yaguchi Y, Izumi K, Uotsu Y, Sakai K. Tetrahedron 2002; 58: 9213
    • 4d Tanaka M, Ohshima T, Mitsuhashi H, Maruno M, Wakamatsu T. Tetrahedron 1995; 51: 11693
    • 4e Hansson T, Wickberg B. J. Org. Chem. 1992; 57: 5370

      For a detailed overview, see:
    • 5a Richter SC, Oestreich M. Chem. Eur. J. 2019; 25: 8508

    • Selected examples:
    • 5b Min T.-S, Mei Y.-K, Chen B.-Z, He L.-B, Song T.-T, Ji D.-W, Hu Y.-C, Wan B, Chen Q.-A. J. Am. Chem. Soc. 2022; 144: 11081
    • 5c Gutmann B, Elsner P, Glasnov T, Roberge DM, Kappe CO. Angew. Chem. Int. Ed. 2014; 53: 11557
    • 5d Kreis M, Palmelund A, Bunch L, Madsen R. Adv. Synth. Catal. 2006; 348: 2148

      For the earliest reports of this debenzoylation, see:
    • 6a Semmler FW. Ber. Dtsch. Chem. Ges. 1906; 39: 2577
    • 6b Haller A, Bauer E. C. R. Hebd. Seances Acad. Sci. 1908; 147: 824

    • For reviews of the Haller–Bauer reaction, see:
    • 6c Mehta G, Venkateswaran RV. Tetrahedron 2000; 56: 1399
    • 6d Gilday JP, Paquette LA. Org. Prep. Proced. Int. 1990; 22: 167

      For works by Paquette and co-workers, see:
    • 7a Paquette LA, Gilday JP, Ra CS. J. Am. Chem. Soc. 1987; 109: 6858
    • 7b Paquette LA, Gilday JP. J. Org. Chem. 1988; 53: 4972
    • 7c Paquette LA, Ra CS. J. Org. Chem. 1988; 53: 4978
    • 7d Gilday JP, Gallucci JC, Paquette LA. J. Org. Chem. 1989; 54: 1399
    • 7e Paquette LA, Maynard GD, Ra CS, Hoppe M. J. Org. Chem. 1989; 54: 1408
    • 7f Paquette LA, Gilday JP, Maynard GD. J. Org. Chem. 1989; 54: 5044

    • For other examples and applications, see:
    • 7g Hamlin KE, Weston AW. Org. React. 1957; 9: 1
    • 7h Walborsky HM, Allen LE, Traenckner HJ, Powers EJ. J. Org. Chem. 1971; 36: 2937
    • 7i Kaiser EM, Warner CD. Synthesis 1975; 395
    • 7j Calas M, Calas B, Giral L. Bull. Soc. Chim. Fr. 1976; 857
    • 7k Mehta G, Praveen M. J. Org. Chem. 1995; 60: 279
    • 7l Mehta G, Reddy KS, Kunwar AC. Tetrahedron Lett. 1996; 37: 2289
    • 7m Mittra A, Bhowmik DR, Venkateswaran RV. J. Org. Chem. 1998; 63: 9555
  • 8 Mazziotta A, Makarov IS, Fristrup P, Madsen R. J. Org. Chem. 2017; 82: 5890

    • For an early report of triphenylacetaldehyde deformylation using hydroxide, see:
    • 9a Daniloff S, Venus-Danilova E. Ber. Dtsch. Chem. Ges. 1926; 59: 377
    • 9b For a review, see: Artamkina GA, Beletskaya IP. Russ. Chem. Rev. 1987; 56: 983

      For the original Cannizzaro disproportionation reaction, see:
    • 10a Cannizzaro S. Justus Liebigs Ann. Chem. 1853; 88: 129
    • 10b For a review, see: Geissman TA. Org. React. 1944; 2: 94

    • For a relevant example, see:
    • 10c DiBiase SA, Gokel GW. J. Org. Chem. 1978; 43: 447
  • 11 For a report of CO-releasing decarbonylation of tertiary aldehydes in water, see: Rodrigues CA. B, Norton de Matos M, Guerreiro BM. H, Goncalves AM. L, Romao CC, Afonso CA. M. Tetrahedron Lett. 2011; 52: 2803

    • For examples of peroxide-mediated radical decarbonylations of aldehydes, see:
    • 12a Doering W. vE, Farber M, Sprecher M, Wiberg KB. J. Am. Chem. Soc. 1952; 74: 3000
    • 12b Winstein S, Seubold FH. J. Am. Chem. Soc. 1947; 69: 2916

      For a metal-free formal (two-pot) decarbonylation of tertiary aldehydes, see:
    • 13a Ref. 5a.
    • 13b For a one-pot Pd-catalyzed tandem arylation/cyclization/migration between tertiary benzaldehydes and aryliodides, see: Gou B.-B, Yang H, Sun H.-R, Chen J, Wu J, Zhou L. Org. Lett. 2019; 21: 80
    • 13c For an example of a method involving the synthesis of tertiary benzaldehydes as synthetic intermediates, see: Debien L, Zard SZ. J. Am. Chem. Soc. 2013; 135: 3808
  • 14 Similar conditions were employed by Giral and co-workers for the debenzoylation of (-quaternary benzophenones. See ref. 7j. For a leading report on cumene synthesis via iron-catalyzed isopropylation of aryl chlorides, see: Sanderson JN, Dominey AP, Percy JM. Adv. Synth. Catal. 2017; 359: 1007
  • 15 Intermediate A is analogous to a ketone-derived intermediate invoked by Gilday and Paquette (ref. 7b). For a relevant study on benzylic anion formation via C–C bond cleavage analogous to A→B, see: Cram DJ, Langemann A, Lwowski W, Kopecky KR. J. Am. Chem. Soc. 1959; 81: 5760
    • 16a Cai X, Keshavarz A, Omaque JD, Stokes BJ. Org. Lett. 2017; 19: 2626
    • 16b Cai X, Tohti A, Ramirez C, Harb H, Fettinger JC, Hratchian HP, Stokes BJ. Org. Lett. 2019; 21: 1574
    • 16c Tohti A, Lerda V, Stokes BJ. Synlett 2022; in press; DOI 10.1055/a-1894-8726
  • 17 This substrate and many others herein were prepared in one step from the corresponding aryl bromide using a variant of the Pd-catalyzed zinc-enolate cross-coupling developed by Hartwig and co-workers, see: Hama T, Liu X, Culkin DA, Hartwig JF. J. Am. Chem. Soc. 2003; 125: 11176

    • A similar disparity between aprotic (ethereal) and protic (HOt-Bu) solvents has been observed in tert-butoxide-mediated fragmentations of ketones, see:
    • 18a Gassman PG, Lumb JT, Zalar FV. J. Am. Chem. Soc. 1967; 89: 946
    • 18b Cristol SJ, Freeman PK. J. Am. Chem. Soc. 1961; 83: 4427
  • 19 As further mechanistic support, two deuterium labeling experiments (one employing deuterated aldehyde as substrate, the other employing THF-d 8 as solvent) both afforded no detectable deuterium incorporation in the product.
  • 20 See the Supporting Information for details.
  • 21 Protodeformylation; General Procedure: An oven-dried 25-mL round-bottom flask was charged with a PTFE-coated magnetic stir bar, fitted with a rubber septum, and purged with nitrogen for 2 min. Then, under ambient pressure of N2, KOt-Bu solution (1.6 M in THF, 0.3 mmol, 1.6 equiv, 0.2 mL) was added to the flask, and further diluted with anhydrous THF (1.0 mL). To the flask, an anhydrous THF solution of aldehyde (0.2 M, 1.0 equiv, 1.0 mL) was added dropwise at room temperature. The mixture was then allowed to stir for 5 h under ambient pressure of N2. The reaction was diluted with EtOAc (2 mL), saturated aqueous NH4Cl (5 mL) was added, and the mixture was allowed to stir until the solution became decolored. The aqueous layer was then extracted with EtOAc (3 × 5 mL) and the combined organic layers were washed with brine, dried over sodium sulfate, and concentrated in vacuo to afford the crude decarbonylated product, which was then purified by silica gel chromatography.
  • 22 Characterization data of representative product 4b: Yield (1.0 mmol scale): 158 mg (93%); colorless oil. 1H NMR (500 MHz, CDCl3): δ = 8.16 (dd, J = 8.5, 1.2 Hz, 1 H), 7.90–7.84 (m, 1 H), 7.73 (dt, J = 7.8, 1.1 Hz, 1 H), 7.62–7.38 (m, 4 H), 3.79 (sept, J = 6.9 Hz, 1 H), 1.44 (d, J = 6.9 Hz, 6 H). 13C NMR (125 MHz, CDCl3): δ = 144.6 (C), 133.9 (C), 131.3 (C), 128.9 (CH), 126.3 (CH), 125.7 (CH), 125.6 (CH), 125.2 (CH), 123.3 (CH), 121.7 (CH), 28.5 (C), 23.6 (CH3)..
  • 23 Cai X.; Stokes B. J. ChemRxiv; 2021, preprint; DOI: 10.26434/chemrxiv-2021-q22x8