CC BY-NC-ND 4.0 · Horm Metab Res 2024; 56(03): 223-234
DOI: 10.1055/a-2236-8625
Original Article: Endocrine Research

The N-Methyl-D-Aspartate Receptor Antagonist Dextromethorphan Improves Glucose Homeostasis and Preserves Pancreatic Islets in NOD Mice

Laura Wörmeyer
1   Department of General Pediatrics, Neonatology and Pediatric Cardiology, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
2   Institute of Metabolic Physiology, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
,
Oliver Nortmann
1   Department of General Pediatrics, Neonatology and Pediatric Cardiology, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
2   Institute of Metabolic Physiology, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
,
Anna Hamacher
2   Institute of Metabolic Physiology, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
,
Celina Uhlemeyer
3   Institute for Vascular and Islet Cell Biology, German Diabetes Center (DDZ), Leibniz Center for Diabetes Research, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
4   German Center for Diabetes Research (DZD e.V.), Helmholtz Zentrum München Deutsches Forschungszentrum für Gesundheit und Umwelt, Neuherberg, Germany
,
Bengt Belgardt
3   Institute for Vascular and Islet Cell Biology, German Diabetes Center (DDZ), Leibniz Center for Diabetes Research, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
4   German Center for Diabetes Research (DZD e.V.), Helmholtz Zentrum München Deutsches Forschungszentrum für Gesundheit und Umwelt, Neuherberg, Germany
,
Daniel Eberhard
2   Institute of Metabolic Physiology, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
,
Ertan Mayatepek
1   Department of General Pediatrics, Neonatology and Pediatric Cardiology, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
,
Thomas Meissner
1   Department of General Pediatrics, Neonatology and Pediatric Cardiology, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
,
Eckhard Lammert
2   Institute of Metabolic Physiology, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
3   Institute for Vascular and Islet Cell Biology, German Diabetes Center (DDZ), Leibniz Center for Diabetes Research, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
4   German Center for Diabetes Research (DZD e.V.), Helmholtz Zentrum München Deutsches Forschungszentrum für Gesundheit und Umwelt, Neuherberg, Germany
,
Alena Welters
1   Department of General Pediatrics, Neonatology and Pediatric Cardiology, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
3   Institute for Vascular and Islet Cell Biology, German Diabetes Center (DDZ), Leibniz Center for Diabetes Research, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
› Author Affiliations
Funding Information University Hospital Düsseldorf, Medical Faculty — Deutsche Forschungsgemeinschaft — http://dx.doi.org/10.13039/501100001659; 434472323 Heinrich-Heine-Universität Düsseldorf — http://dx.doi.org/10.13039/501100003484;

Abstract

For treatment of type 1 diabetes mellitus, a combination of immune-based interventions and medication to promote beta-cell survival and proliferation has been proposed. Dextromethorphan (DXM) is an N-methyl-D-aspartate receptor antagonist with a good safety profile, and to date, preclinical and clinical evidence for blood glucose-lowering and islet-cell-protective effects of DXM have only been provided for animals and individuals with type 2 diabetes mellitus. Here, we assessed the potential anti-diabetic effects of DXM in the non-obese diabetic mouse model of type 1 diabetes. More specifically, we showed that DXM treatment led to five-fold higher numbers of pancreatic islets and more than two-fold larger alpha- and beta-cell areas compared to untreated mice. Further, DXM treatment improved glucose homeostasis and reduced diabetes incidence by 50%. Our data highlight DXM as a novel candidate for adjunct treatment of preclinical or recent-onset type 1 diabetes.

Supplementary Material



Publication History

Received: 29 August 2023

Accepted after revision: 20 December 2023

Accepted Manuscript online:
02 January 2024

Article published online:
29 January 2024

© 2024. The Author(s). This is an open access article published by Thieme under the terms of the Creative Commons Attribution-NonDerivative-NonCommercial-License, permitting copying and reproduction so long as the original work is given appropriate credit. Contents may not be used for commercial purposes, or adapted, remixed, transformed or built upon. (https://creativecommons.org/licenses/by-nc-nd/4.0/).

Georg Thieme Verlag
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

  • 1 Boscari F, Avogaro A. Current treatment options and challenges in patients with Type 1 diabetes: Pharmacological, technical advances and future perspectives. Rev Endocr Metab Disord 2021; 22: 217-240
  • 2 Beck RW, Bergenstal RM, Laffel LM. et al. Advances in technology for management of type 1 diabetes. Lancet 2019; 394: 1265-1273
  • 3 Boughton CK, Hovorka R. New closed-loop insulin systems. Diabetologia 2021; 64: 1007-1015
  • 4 Kramer CK, Retnakaran R, Zinman B. Insulin and insulin analogs as antidiabetic therapy: A perspective from clinical trials. Cell Metab 2021; 33: 740-747
  • 5 Foster NC, Beck RW, Miller KM. et al. State of type 1 diabetes management and outcomes from the T1D exchange in 2016-2018. Diabetes Technol Ther 2019; 21: 66-72
  • 6 Rawshani A, Rawshani A, Gudbjornsdottir S. Mortality and cardiovascular disease in type 1 and type 2 diabetes. N Engl J Med 2017; 377: 300-301
  • 7 Garg SK, Henry RR, Banks P. et al. Effects of sotagliflozin added to insulin in patients with type 1 diabetes. N Engl J Med 2017; 377: 2337-2348
  • 8 Rawshani A, Sattar N, Franzen S. et al. Excess mortality and cardiovascular disease in young adults with type 1 diabetes in relation to age at onset: a nationwide, register-based cohort study. Lancet 2018; 392: 477-486
  • 9 The Diabetes Control and Complications Trial Research Group. Effect of intensive therapy on residual beta-cell function in patients with type 1 diabetes in the diabetes control and complications trial. A randomized, controlled trial. Ann Intern Med 1998; 128: 517-523
  • 10 Atkinson MA, Roep BO, Posgai A. et al. The challenge of modulating beta-cell autoimmunity in type 1 diabetes. Lancet Diabetes Endocrinol 2019; 7: 52-64
  • 11 Mallone R, Eizirik DL. Presumption of innocence for beta cells: why are they vulnerable autoimmune targets in type 1 diabetes?. Diabetologia 2020; 63: 1999-2006
  • 12 Roep BO, Thomaidou S, van Tienhoven R. et al. Type 1 diabetes mellitus as a disease of the beta-cell (do not blame the immune system?). Nat Rev Endocrinol 2021; 17: 150-161
  • 13 Herold KC, Bundy BN, Long SA. et al. An anti-CD3 antibody, teplizumab, in relatives at risk for type 1 diabetes. N Engl J Med 2019; 381: 603-613
  • 14 Bellin MD, Dunn TB. Transplant strategies for type 1 diabetes: whole pancreas, islet and porcine beta cell therapies. Diabetologia 2020; 63: 2049-2056
  • 15 Marquard J, Otter S, Welters A. et al. Characterization of pancreatic NMDA receptors as possible drug targets for diabetes treatment. Nat Med 2015; 21: 363-372
  • 16 Otter S, Lammert E. Exciting times for pancreatic islets: glutamate signaling in endocrine cells. Trends Endocrinol Metab 2016; 27: 177-188
  • 17 Scholz O, Otter S, Welters A. et al. Peripherally active dextromethorphan derivatives lower blood glucose levels by targeting pancreatic islets. Cell Chem Biol 2021;
  • 18 Huang XT, Li C, Peng XP. et al. An excessive increase in glutamate contributes to glucose-toxicity in beta-cells via activation of pancreatic NMDA receptors in rodent diabetes. Sci Rep 2017; 7: 44120
  • 19 Marquard J, Stirban A, Schliess F. et al. Effects of dextromethorphan as add-on to sitagliptin on blood glucose and serum insulin concentrations in individuals with type 2 diabetes mellitus: a randomized, placebo-controlled, double-blinded, multiple crossover, single-dose clinical trial. Diabetes Obes Metab 2016; 18: 100-103
  • 20 Gresch A, Düfer M. Dextromethorphan and dextrorphan influence insulin secretion by interacting with K(ATP) and L-type Ca(2+) channels in pancreatic β-cells. J Pharmacol Exp Ther 2020; 375: 10-20
  • 21 Boldyrev AA, Kazey VI, Leinsoo TA. et al. Rodent lymphocytes express functionally active glutamate receptors. Biochem Biophys Res Commun 2004; 324: 133-139
  • 22 Mashkina AP, Tyulina OV, Solovyova TI. et al. The excitotoxic effect of NMDA on human lymphocyte immune function. Neurochem Int 2007; 51: 356-360
  • 23 Miglio G, Varsaldi F, Lombardi G. Human T lymphocytes express N-methyl-D-aspartate receptors functionally active in controlling T cell activation. Biochem Biophys Res Commun 2005; 338: 1875-1883
  • 24 Mashkina AP, Cizkova D, Vanicky I. et al. NMDA receptors are expressed in lymphocytes activated both in vitro and in vivo. Cell Mol Neurobiol 2010; 30: 901-907
  • 25 Boldyrev AA, Bryushkova EA, Vladychenskaya EA. NMDA receptors in immune competent cells. Biochemistry (Mosc) 2012; 77: 128-134
  • 26 Orihara K, Odemuyiwa SO, Stefura WP. et al. Neurotransmitter signalling via NMDA receptors leads to decreased T helper type 1-like and enhanced T helper type 2-like immune balance in humans. Immunology 2018; 153: 368-379
  • 27 Kahlfuss S, Simma N, Mankiewicz J. et al. Immunosuppression by N-methyl-D-aspartate receptor antagonists is mediated through inhibition of Kv1.3 and KCa3.1 channels in T cells. Mol Cell Biol 2014; 34: 820-831
  • 28 Liu Y, Qin L, Li G. et al. Dextromethorphan protects dopaminergic neurons against inflammation-mediated degeneration through inhibition of microglial activation. J Pharmacol Exp Ther 2003; 305: 212-218
  • 29 Wang CC, Lee YM, Wei HP. et al. Dextromethorphan prevents circulatory failure in rats with endotoxemia. J Biomed Sci 2004; 11: 739-747
  • 30 Li G, Liu Y, Tzeng NS. et al. Protective effect of dextromethorphan against endotoxic shock in mice. Biochem Pharmacol 2005; 69: 233-240
  • 31 Liu PY, Lin CC, Tsai WC. et al. Treatment with dextromethorphan improves endothelial function, inflammation and oxidative stress in male heavy smokers. J Thromb Haemost 2008; 6: 1685-1692
  • 32 Liu SL, Li YH, Shi GY. et al. Dextromethorphan reduces oxidative stress and inhibits atherosclerosis and neointima formation in mice. Cardiovasc Res 2009; 82: 161-169
  • 33 Li MH, Luo YH, Lin CF. et al. Dextromethorphan efficiently increases bactericidal activity, attenuates inflammatory responses, and prevents group a streptococcal sepsis. Antimicrob Agents Chemother 2011; 55: 967-973
  • 34 Chen DY, Song PS, Hong JS. et al. Dextromethorphan inhibits activations and functions in dendritic cells. Clin Dev Immunol 2013;
  • 35 Pu B, Xue Y, Wang Q. et al. Dextromethorphan provides neuroprotection via anti-inflammatory and anti-excitotoxicity effects in the cortex following traumatic brain injury. Mol Med Rep 2015; 12: 3704-3710
  • 36 Chen DY, Lin CC, Chen YM. et al. Dextromethorphan exhibits anti-inflammatory and immunomodulatory effects in a murine model of collagen-induced arthritis and in human rheumatoid arthritis. Sci Rep 2017; 7: 11353
  • 37 Zhou R, Chen SH, Li G. et al. Ultralow doses of dextromethorphan protect mice from endotoxin-induced sepsis-like hepatotoxicity. Chem Biol Interact 2019; 303: 50-56
  • 38 Chen YM, Chen IC, Chao YH. et al. Dextromethorphan exhibits anti-inflammatory and immunomodulatory effects in a murine model: therapeutic implication in psoriasis. Life (Basel) 2022; 12: 696
  • 39 Pearson JA, Wong FS, Wen L. The importance of the non obese diabetic (NOD) mouse model in autoimmune diabetes. J Autoimmun 2016; 66: 76-88
  • 40 Schindelin J, Arganda-Carreras I, Frise E. et al. Fiji: an open-source platform for biological-image analysis. Nat Meth 2012; 9: 676-682
  • 41 Yesil P, Michel M, Chwalek K. et al. A new collagenase blend increases the number of islets isolated from mouse pancreas. Islets 2009; 1: 185-190
  • 42 Schmittgen TD, Livak KJ. Analyzing real-time PCR data by the comparative CT method. Nature Protocols 2008; 3: 1101-1108
  • 43 Anderson MS, Bluestone JA. The NOD mouse: a model of immune dysregulation. Annu Rev Immunol 2005; 23: 447-485
  • 44 Faleo G, Fotino C, Bocca N. et al. Prevention of autoimmune diabetes and induction of beta-cell proliferation in NOD mice by hyperbaric oxygen therapy. Diabetes 2012; 61: 1769-1778
  • 45 Burrack AL, Martinov T, Fife BTT. Cell-mediated beta cell destruction: autoimmunity and alloimmunity in the context of type 1 diabetes. Front Endocrinol (Lausanne) 2017; 8: 343
  • 46 Sarkar SA, Lee CE, Victorino F. et al. Expression and regulation of chemokines in murine and human type 1 diabetes. Diabetes 2012; 61: 436-446
  • 47 Dadfar E, Ghaderi A, Moshfegh A. et al. Reduced level of CX3CR1 positive T-cells and monocytes in children with, newly diagnosed, Type 1 diabetes. J Immunol 2020; 204: 7
  • 48 Ivakine EA, Gulban OM, Mortin-Toth SM. et al. Molecular genetic analysis of the Idd4 locus implicates the IFN response in type 1 diabetes susceptibility in nonobese diabetic mice. J Immunol 2006; 176: 2976-2990
  • 49 Diana J, Lehuen A. Macrophages and beta-cells are responsible for CXCR2-mediated neutrophil infiltration of the pancreas during autoimmune diabetes. EMBO Mol Med 2014; 6: 1090-1104
  • 50 Citro A, Valle A, Cantarelli E. et al. CXCR1/2 inhibition blocks and reverses type 1 diabetes in mice. Diabetes 2015; 64: 1329-1340
  • 51 Martin AP, Rankin S, Pitchford S. et al. Increased expression of CCL2 in insulin-producing cells of transgenic mice promotes mobilization of myeloid cells from the bone marrow, marked insulitis, and diabetes. Diabetes 2008; 57: 3025-3033
  • 52 Sims EK, Bundy BN, Stier K. et al. Teplizumab improves and stabilizes beta cell function in antibody-positive high-risk individuals. Sci Transl Med 2021; 13: eabc8980
  • 53 Sims EK, Bundy BN, Stier KD et al. 277-OR: Teplizum- ab reverses the loss of C-peptide in relatives at risk for type 1 diabetes (T1D). Diabetes 2000; 69 (Suppl_1): 277-OR
  • 54 von Scholten BJ, Kreiner FF, Gough SCL. et al. Current and future therapies for type 1 diabetes. Diabetologia 2021; 64: 1037-1048
  • 55 Eizirik DL, Colli ML, Ortis F. The role of inflammation in insulitis and β-cell loss in type 1 diabetes. Nat Rev Endocrinol 2009; 5: 219-226
  • 56 Kaminitz A, Stein J, Yaniv I. et al. The vicious cycle of apoptotic beta-cell death in type 1 diabetes. Immunol Cell Biol 2007; 85: 582-589
  • 57 Martin AP, Grisotto MG, Canasto-Chibuque C. et al. Islet expression of M3 uncovers a key role for chemokines in the development and recruitment of diabetogenic cells in NOD mice. Diabetes 2008; 57: 387-394
  • 58 Panee J. Monocyte chemoattractant protein 1 (MCP-1) in obesity and diabetes. Cytokine 2012; 60: 1-12
  • 59 Gschwandtner M, Derler R, Midwood KS. More than just attractive: how CCL2 influences myeloid cell behavior beyond chemotaxis. Front Immunol 2019; 10: 2759
  • 60 Luther SA, Cyster JG. Chemokines as regulators of T cell differentiation. Nat Immunol 2001; 2: 102-107
  • 61 Solomon M, Balasa B, Sarvetnick N. CCR2 and CCR5 chemokine receptors differentially influence the development of autoimmune diabetes in the NOD mouse. Autoimmunity 2010; 43: 156-163
  • 62 Sullivan TJ, Miao Z, Zhao BN. et al. Experimental evidence for the use of CCR2 antagonists in the treatment of type 2 diabetes. Metabolism 2013; 62: 1623-1632
  • 63 Piemonti L, Leone BE, Nano R. et al. Human pancreatic islets produce and secrete MCP-1/CCL2: relevance in human islet transplantation. Diabetes 2002; 51: 55-65
  • 64 Yi Z, Diz R, Martin AJ. et al. Long-term remission of diabetes in NOD mice is induced by nondepleting anti-CD4 and anti-CD8 antibodies. Diabetes 2012; 61: 2871-2880
  • 65 Silva AR, Dinis-Oliveira RJ. Pharmacokinetics and pharmacodynamics of dextromethorphan: clinical and forensic aspects. Drug Metab Rev 2020; 52: 258-282
  • 66 Paul IM, Reynolds KM, Kauffman RE. et al. Adverse events associated with pediatric exposures to dextromethorphan. Clin Toxicol (Phila) 2017; 55: 25-32
  • 67 Welters A, Klüppel C, Mrugala J. et al. NMDAR antagonists for the treatment of diabetes mellitus-Current status and future directions. Diabetes Obes Metab 2017; 19: 95-106
  • 68 Welters A, Lammert E. Novel approaches to restore pancreatic beta-cell mass and function. Handb Exp Pharmacol 2021; 274: 439-465
  • 69 Kusari J, Zhou S, Padillo E. et al. Effect of memantine on neuroretinal function and retinal vascular changes of streptozotocin-induced diabetic rats. Invest Ophthalmol Vis Sci 2007; 48: 5152-5159
  • 70 Pelligra A, Mrugala J, Griess K et al. Pancreatic islet protection at the expense of secretory function involves serine-linked mitochondrial one-carbon metabolism. Cell Rep 2023; 42: 112615
  • 71 Fu Z, Wang Z, Liu CH. et al. Fibroblast growth factor 21 protects photoreceptor function in type 1 diabetic mice. Diabetes 2018; 67: 974-985
  • 72 Stanciu CN, Penders TM, Rouse EM. Recreational use of dextromethorphan, “Robotripping”—A brief review. Am J Addict 2016; 25: 374-377
  • 73 Atkinson MA. Evaluating preclinical efficacy. Sci Transl Med 2011; 3: 96cm22