Subscribe to RSS
DOI: 10.1055/a-2238-9615
Ganz-Exom-Sequenzierung zur Bestimmung zielgerichteter Therapien für Patientinnen mit metastasiertem Mammakarzinom – eine Machbarkeitsstudie
Whole Exome Analysis to Select Targeted Therapies for Patients with Metastatic Breast Cancer – A Feasibility Study Supported by: | Förderung Krebsforschung Nordrhein-Westfalen e. V. |Zusammenfassung
Einleitung Ziel dieser Machbarkeitsstudie war es, zielgerichtete Therapien entsprechend der ESCAT-Skala (ESMO Scale for Clinical Actionability of molecular Targets) zu bestimmen. Für die Interpretation der Daten wurde eine browserbasierte Plattform zur Entscheidungsfindung (MH Guide, Molecular Health, Heidelberg, Germany) eingesetzt.
Patientinnen Es wurde eine Exomsequenzierung von Tumorgewebe und peripherem Blut von Patientinnen mit metastasiertem Mammakarzinom (n = 44) durchgeführt, um somatische sowie Keimbahnmutationen zu identifizieren.
Ergebnisse Bei 32 Patientinnen mit metastasiertem Mammakarzinom konnte eine Dateninterpretation durchgeführt werden. Es wurden 25 genomische Veränderungen (ESCAT-Evidenzstufe I oder II) bei 18/32 Patientinnen mit metastasiertem Mammakarzinom identifiziert und abschließend ausgewertet: Darunter fanden sich 3 Fälle mit erhöhter Kopienzahl bei HER2, 2 gBRCA1-, 2 gBRCA2-, 6 PIK3CA-, 1 ESR1-, 3 PTEN-, 1 AKT1- und 2 HER2-Mutationen. Dazu kamen noch 5 Proben, die eine hochgradige Mikrosatelliten-Instabilität aufwiesen.
Schlussfolgerung Die daraus abzuleitenden Behandlungsoptionen wurden in einer Tumorkonferenz diskutiert und dann einer kleinen, aber relevanten Anzahl von Patientinnen mit metastasiertem Mammakarzinom (7/18) empfohlen. Die hier vorgestellte Arbeit stellt eine wertvolle Machbarkeitsstudie dar, die dazu beitragen kann, molekulare Tumorboards innerhalb des Deutschen Netzwerks für Personalisierte Medizin zu etablieren. Ziel ist, die für Analysen benötigte Zeit zu verkürzen und die Wahl zielgerichteter Therapien zu optimieren.
Abstract
Introduction The purpose of this feasibility study was to select targeted therapies according to the “ESMO Scale for Clinical Actionability of molecular Targets (ESCAT)”. Data interpretation was further supported by a browser-based Treatment Decision Support platform (MH Guide, Molecular Health, Heidelberg, Germany).
Patients We applied next generation sequencing based whole exome sequencing of tumor tissue and peripheral blood of patients with metastatic breast cancer (n = 44) to detect somatic as well as germline mutations.
Results In 32 metastatic breast cancer patients, data interpretation was feasible. We identified 25 genomic alterations with ESCAT Level of Evidence I or II in 18/32 metastatic breast cancer patients, which were available for evaluation: three copy number gains in HER2, two gBRCA1, two gBRCA2, six PIK3CA, one ESR1, three PTEN, one AKT1 and two HER2 mutations. In addition, five samples displayed Microsatellite instability high-H.
Conclusions Resulting treatment options were discussed in a tumor board and could be recommended in a small but relevant proportion of patients with metastatic breast cancer (7/18). Thus, this study is a valuable preliminary work for the establishment of a molecular tumor board within the German initiative “Center for Personalized Medicine” which aims to shorten time for analyses and optimize selection of targeted therapies.
Schlüsselwörter
Mammakarzinom - zielgerichtete Therapie - Ganz-Exom-Sequenzierung - EntscheidungsplattformPublication History
Received: 30 April 2023
Accepted after revision: 09 August 2023
Article published online:
22 March 2024
© 2023. This article was originally published by Thieme as Bernadette Anna Sophia Jaeger et al. Whole Exome Analysis to Select Targeted Therapies for Patients with Metastatic Breast Cancer – A Feasibility Study. Geburtsh Frauenheilk 2023; 83: 1138–1147 as an open access article under the terms of the Creative Commons Attribution-NonDerivative-NonCommercial-License, permitting copying and reproduction so long as the original work is given appropriate credit. Contents may not be used for commercial purposes, or adapted, remixed, transformed or built upon. (https:// creativecommons.org/licenses/by-nc-nd/4.0/)
Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany
-
Literatur
- 1 Cardoso F, Senkus E, Costa A. et al. 4th ESO-ESMO international consensus guidelines for advanced breast cancer (ABC 4). Ann Oncol 2018; 29: 1634-1657 DOI: 10.1016/j.annonc.2020.09.010.
- 2 Priestley P, Baber J, Lolkema MP. et al. Pan-cancer whole-genome analyses of metastatic solid tumours. Nature 2019; 575: 210-216 DOI: 10.1038/s41586-019-1689-y.
- 3 Beroukhim R, Mermel CH, Porter D. et al. The landscape of somatic copynumber alteration across human cancers. Nature 2010; 463: 899-905 DOI: 10.1038/nature08822.
- 4 Ledermann J, Harter P, Gourley C. et al. Olaparib Maintenance Therapy in Patients With Platinum-Sensitive Relapsed Serous Ovarian Cancer. Obstet Gynecol Surv 2014; 69: 594-596
- 5 González-Martín A, Pothuri B, Vergote I. et al. Niraparib in Patients with Newly Diagnosed Advanced Ovarian Cancer. N Engl J Med 2019; 381: 2391-2402 DOI: 10.1056/NEJMoa1910962.
- 6 Holloway RW, Gancedo MA, Fong PC. et al. Rucaparib maintenance treatment for recurrent ovarian carcinoma after response to platinum therapy (ARIEL3): a randomised, double-blind, placebo-controlled, phase 3 trial. Lancet 2018; 390: 1949-1961 DOI: 10.1016/S0140-6736(17)32440-6.
- 7 Robson M, Im SA, Senkus E. et al. Olaparib for Metastatic Breast Cancer in Patients with a Germline BRCA Mutation. N Engl J Med 2017; 377: 523-533 DOI: 10.1056/NEJMoa1706450.
- 8 Litton JK, Rugo HS, Ettl J. et al. Talazoparib in Patients with Advanced Breast Cancer and a Germline BRCA Mutation. N Engl J Med 2018; 379: 753-763 DOI: 10.1056/NEJMoa1802905.
- 9 de Bono J, Mateo J, Fizazi K. et al. Olaparib for Metastatic Castration-Resistant Prostate Cancer. N Engl J Med 2020; 382: 2091-2102 DOI: 10.1056/NEJMoa1911440.
- 10 Golan T, Hammel P, Reni M. et al. Maintenance Olaparib for Germline BRCA-Mutated Metastatic Pancreatic Cancer. N Engl J Med 2019; 381: 317-327 DOI: 10.1056/NEJMoa1903387.
- 11 Scheidemann ER, Shajahan-Haq AN. Resistance to CDK4/6 inhibitors in estrogen receptor-positive breast cancer. Int J Mol Sci 2021; 22: 12292 DOI: 10.3390/ijms222212292.
- 12 Ono M, Oba T, Shibata T. et al. The mechanisms involved in the resistance of estrogen receptor-positive breast cancer cells to palbociclib are multiple and change over time. J Cancer Res Clin Oncol 2021; 147: 3211-3224 DOI: 10.1007/s00432-021-03722-3.
- 13 European Medicines Agency. EMA recommendations on DPD testing prior to treatment with fluorouracil, capecitabine, tegafur and flucytosine. Eur Med Agency 2020; 31: 3
- 14 Kautto EA, Bonneville R, Miya J. et al. Performance evaluation for rapid detection of pan-cancer microsatellite instability with MANTIS. Oncotarget 2017; 8: 7452-7463 DOI: 10.18632/oncotarget.13918.
- 15 Mateo J, Chakravarty D, Dienstmann R. et al. A framework to rank genomic alterations as targets for cancer precision medicine: The ESMO Scale for Clinical Actionability of molecular Targets (ESCAT). Ann Oncol 2018; 29: 1895-1902 DOI: 10.1093/annonc/mdy263.
- 16 Condorelli R, Mosele F, Verret B. et al. Genomic alterations in breast cancer: Level of evidence for actionability according to ESMO Scale for Clinical Actionability of molecular Targets (ESCAT). Ann Oncol 2019; 30: 365-373 DOI: 10.1093/annonc/mdz036.
- 17 Chang Z, Liu X, Zhao W. et al. Identification and Characterization of the Copy Number Dosage-Sensitive Genes in Colorectal Cancer. Mol Ther Methods Clin Dev 2020; 18: 501-510 DOI: 10.1016/j.omtm.2020.06.020.
- 18 Reinhardt K, Stückrath K, Hartung C. et al. PIK3CA-mutations in breast cancer. Breast Cancer Res Treat 2022; 483-493 DOI: 10.1007/s10549-022-06637-w.
- 19 Kast K, Rhiem K, Wappenschmidt B. et al. Prevalence of BRCA1/2 germline mutations in 21 401 families with breast and ovarian cancer. J Med Genet 2016; 53: 465-471 DOI: 10.1136/jmedgenet-2015-103672.
- 20 Liu B, Morrison CD, Johnson CS. et al. Computational methods for detecting copy number variations in cancer genome using next generation sequencing: Principles and challenges. Oncotarget 2013; 4: 1868-1881 DOI: 10.18632/oncotarget.1537.
- 21 Turner N, Pearson A, Sharpe R. et al. FGFR1 amplification drives endocrine therapy resistance and is a therapeutic target in breast cancer. Cancer Res 2010; 70: 2085-2094 DOI: 10.1158/0008-5472.CAN-09-3746.
- 22 Majewski IJ, Nuciforo P, Mittempergher L. et al. PIK3CA mutations are associated with decreased benefit to neoadjuvant human epidermal growth factor receptor 2-targeted therapies in breast cancer. J Clin Oncol 2015; 33: 1334-1339 DOI: 10.1200/JCO.2014.55.2158.
- 23 Minuti G, Cappuzzo F, Duchnowska R. et al. Increased MET and HGF gene copy numbers are associated with trastuzumab failure in HER2-positive metastatic breast cancer. Br J Cancer 2012; 107: 793-799 DOI: 10.1038/bjc.2012.335.
- 24 Chandarlapaty S, Sakr RA, Giri D. et al. Frequent mutational activation of the PI3K-AKT pathway in trastuzumab-resistant breast cancer. Clin Cancer Res 2012; 18: 6784-6791 DOI: 10.1158/1078-0432.CCR-12-1785.
- 25 Giovannelli P, Di Donato M, Galasso G. et al. The androgen receptor in breast cancer. Front Endocrinol (Lausanne) 2018; 9: 492 DOI: 10.3389/fendo.2018.00492.
- 26 Serio PAMP, de Lima PereiraGF, Katayama MLH. et al. Somatic mutational profile of high-grade serous ovarian carcinoma and triple-negative breast carcinoma in young and elderly patients: Similarities and divergences. Cells 2021; 10: 3586 DOI: 10.3390/cells10123586.
- 27 Sigismund S, Avanzato D, Lanzetti L. Emerging functions of the EGFR in cancer. Mol Oncol 2018; 12: 3-20 DOI: 10.1002/1878-0261.12155.
- 28 Jensen JD, Laenkholm A, Knoop A. PIK3CA Mutations May Be Discordant between Primary and Corresponding Metastatic Disease in Breast Cancer. Clin Cancer Res 2011; 17: 667-677 DOI: 10.1158/1078-0432.CCR-10-1133.
- 29 Fusco N, Malapelle U, Fassan M. et al. PIK3CA Mutations as a Molecular Target for Hormone Receptor-Positive, HER2-Negative Metastatic Breast Cancer. Front Oncol 2021; 11: 644737 DOI: 10.3389/fonc.2021.644737.
- 30 Allegretti M, Fabi A, Buglioni S. et al. Tearing down the walls: FDA approves next generation sequencing (NGS) assays for actionable cancer genomic aberrations. J Exp Clin Cancer Res 2018; 37: 47 DOI: 10.1186/s13046-018-0702-x.
- 31 Van Geelen CT, Savas P, Teo ZL. et al. Clinical implications of prospective genomic profiling of metastatic breast cancer patients. Breast Cancer Res 2020; 22: 91 DOI: 10.1186/s13058-020-01328-0.
- 32 Crimini E, Repetto M, Aftimos P. et al. Precision medicine in breast cancer: From clinical trials to clinical practice. Cancer Treat Rev 2021; 98: 102223 DOI: 10.1016/j.ctrv.2021.102223.
- 33 Ohlschlegel C, Zahel K, Kradolfer D. et al. HER2 genetic heterogeneity in breast carcinoma. J Clin Pathol 2011; 64: 1112-1116 DOI: 10.1136/jclinpath-2011-200265.
- 34 Van Bockstal MR, Agahozo MC, van Marion R. et al. Somatic mutations and copy number variations in breast cancers with heterogeneous HER2 amplification. Mol Oncol 2020; 14: 671-685 DOI: 10.1002/1878-0261.12650.
- 35 Niikura N, Liu J, Hayashi N. et al. Loss of human epidermal growth factor receptor 2 (HER2) expression in metastatic sites of HER2-overexpressing primary breast tumors. J Clin Oncol 2012; 30: 593-599 DOI: 10.1200/JCO.2010.33.8889.
- 36 Reiter JG, Baretti M, Gerold JM. et al. An analysis of genetic heterogeneity in untreated cancers. Nat Rev Cancer 2019; 19: 639-650 DOI: 10.1038/s41568-019-0185-x.
- 37 Ross JS, Gay LM, Wang K. et al. Non-Amplification ERBB2 Genomic Alterations in 5,605 Cases of Relapsed and Metastatic Breast Cancer: an Emerging Opportunity for anti-HER2 Targeted Therapies. Cancer 2016; 122: 2654-2662 DOI: 10.1002/cncr.30102.
- 38 Hempel D, Ebner F, Garg A. et al. Real world data analysis of next generation sequencing and protein expression in metastatic breast cancer patients. Sci Rep 2020; 10: 10459 DOI: 10.1038/s41598-020-67393-9.
- 39 Mosele F, Remon J, Mateo J. et al. Recommendations for the use of nextgeneration sequencing (NGS) for patients with metastatic cancers: a report from the ESMO Precision Medicine Working Group. Ann Oncol 2020; 31: 1491-1505 DOI: 10.1016/j.annonc.2020.07.014.
- 40 Sultova E, Westphalen CB, Jung A. et al. NGS-guided precision oncology in metastatic breast and gynecological cancer: first experiences at the CCC Munich LMU. Arch Gynecol Obstet 2021; 303: 1331-1345 DOI: 10.1007/s00404-020-05881-z.
- 41 Sivapiragasam A, Ashok KumarP, Sokol ES. et al. Predictive Biomarkers for Immune Checkpoint Inhibitors in Metastatic Breast Cancer. Cancer Med 2021; 10: 53-61 DOI: 10.1002/cam4.3550.
- 42 Reinhardt F, Franken A, Fehm T. et al. Navigation through inter- and intratumoral heterogeneity of endocrine resistance mechanisms in breast cancer: A potential role for Liquid Biopsies?. Tumor Biol 2017; 39: 1010428317731511 DOI: 10.1177/1010428317731511.