Subscribe to RSS
DOI: 10.1055/a-2241-6858
Revolutionizing C–H Activation Reactions: Harnessing Green Solvents for Sustainable Catalysis
![](https://www.thieme-connect.de/media/synthesis/202415/lookinside/thumbnails/ss-2023-r0471-sr_10-1055_a-2241-6858-1.jpg)
Abstract
This short review showcases the developing field of C–H activation reactions, with a particular focus on green catalysis through the use of environmentally friendly solvents. It evaluates the effects of these solvents on reaction outcomes, environmental aspects and general efficacy, highlighting their advantages that lead to greater selectivity, lower levels of toxicity and enhanced reaction rates. Water and biobased alternatives such as polyethylene glycols, glycerol, 2-methyltetrahydrofuran, γ-valerolactone, methanol, ethanol, p-cymene and diethyl carbonate are representative examples of such solvents. The scope of this short review encompasses studies of different methodologies, catalysts, and reaction conditions that help to develop C–H activation reactions utilizing green solvents.
1 Introduction
2 Water
3 Polyethylene Glycols (PEGs)
4 Glycerol
5 2-Methyltetrahydrofuran (2-MeTHF)
6 γ-Valerolactone (GVL)
7 Methanol
8 Ethanol
9 p-Cymene
10 Diethyl Carbonate
11 Conclusion
Publication History
Received: 13 November 2023
Accepted after revision: 10 January 2024
Accepted Manuscript online:
10 January 2024
Article published online:
12 February 2024
© 2024. Thieme. All rights reserved
Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany
-
References
- 1 Clark JH, Luque R, Matharu AS. Ann. Rev. Chem. Biomol. Eng. 2012; 3: 183
- 2 Linthorst JA. Found. Chem. 2009; 12: 55
- 3 Baron M. Waste Biomass Valorization 2012; 3: 395
- 4 Henderson RK, Jiménez-González C, Constable DJ. C, Alston SR, Inglis GG. A, Fisher G, Sherwood J, Binks SP, Curzons AD. Green Chem. 2011; 13: 854
- 5 Kumar A, Gupta G, Srivastava S. Green Chem. 2011; 13: 2459
- 6 Wender PA, Handy ST, Wright DL. Chem. Ind. 1997; 19: 765
- 7 Organic Synthesis: Theory and Applications . Hudlicky T, Natchus MG. Jai Press; Greenwich (CT, USA): 1993
- 8 Wender PA. Chem. Rev. 1996; 96: 1
- 9 Eissen M, Metzger JO. Chem. Eur. J. 2002; 8: 3580
- 10 Centi G. Catal. Today 2003; 77: 287
- 11 Anastas PT, Eghbali N. Chem. Soc. Rev. 2010; 39: 301
- 12 Kumar A, Tripathi VD, Kumar P. Green Chem. 2011; 13: 51
- 13 Biermann U, Bornscheuer UT, Meier MA. R, Metzger JO, Schäfer HJ. Angew. Chem. Int. Ed. 2011; 50: 3854
- 14 Sambiagio C, Schönbauer D, Blieck R, Dao-Huy T, Pototschnig G, Schaaf P, Wiesinger T, Zia MF, Wencel-Delord J, Besset T, Maes BU. W, Schnürch M. Chem. Soc. Rev. 2018; 47: 6603
- 15 Rogge T, Kaplaneris N, Chatani N, Kim J, Chang S, Punji B, Schafer LL, Musaev DG, Wencel-Delord J, Roberts CA, Sarpong R, Wilson ZE, Brimble MA, Johansson MJ, Ackermann L. Nat. Rev. Methods Primers 2021; 1: 43
- 16 He J, Wasa M, Chan KS. L, Shao Q, Yu J.-Q. Chem. Rev. 2017; 117: 8754
- 17 Li B, Dixneuf PH. Chem. Soc. Rev. 2013; 42: 5744
- 18 Yang J, Fu T, Long Y, Zhou X. Chin. J. Org. Chem. 2017; 37: 1111
- 19 Gandeepan P, Kaplaneris N, Santoro S, Vaccaro L, Ackermann L. ACS Sustainable Chem. Eng. 2019; 7: 8023
- 20 Lipshutz BH, Gallou F, Handa S. ACS Sustainable Chem. Eng. 2016; 4: 5838
- 21 Sheldon RA. Green Chem. 2005; 7: 267
- 22 Nie R, Lai R, Lv S, Xu Y, Guo L, Wang Q, Wu Y. Chem. Commun. 2019; 55: 11418
- 23 Herrerías CI, Yao X, Li Z, Li C.-J. Chem. Rev. 2007; 107: 2546
- 24 Ma W, Mei R, Tenti G, Ackermann L. Chem. Eur. J. 2014; 20: 15248
- 25 Upadhyay NS, Thorat VH, Sato R, Annamalai P, Chuang S, Cheng C. Green Chem. 2017; 19: 3219
- 26 Gong H, Zeng H, Zhou F, Li C. Angew. Chem. Int. Ed. 2015; 54: 5718
- 27 Hu X, Yang X, Dai X, Li C. Adv. Synth. Catal. 2017; 359: 2402
- 28 Pu F, Liu Z, Zhang L, Fan J, Shi X. ChemCatChem 2019; 11: 4116
- 29 Mitra T, Kundu M, Roy B. J. Org. Chem. 2019; 85: 345
- 30 Debbarma S, Sk MdR, Modak B, Maji MS. J. Org. Chem. 2019; 84: 6207
- 31 Chen J, Spear SK, Huddleston JG, Rogers RD. Green Chem. 2005; 7: 64
- 32 Colacino E, Martinez J, Lamaty F, Patrikeeva LS, Khemchyan LL, Ananikov VP, Beletskaya IP. Coord. Chem. Rev. 2012; 256: 2893
- 33 Vafaeezadeh M, Hashemi MM. J. Mol. Liq. 2015; 207: 73
- 34 Li J, Tang M, Zang L, Zhang X, Zhao Z, Ackermann L. Org. Lett. 2016; 18: 2742
- 35 Wang H, Koeller J, Liu W, Ackermann L. Chem. Eur. J. 2015; 21: 15525
- 36 Zhao H, Zhang T, Yan T, Cai M. J. Org. Chem. 2015; 80: 8849
- 37 Kim SH, Lee HS, Kim SH, Kim JN. Tetrahedron Lett. 2008; 49: 5863
- 38 Ma W, Ackermann L. ACS Catal. 2015; 5: 2822
- 39 Kuai C, Wang L, Li B, Yang Z, Cui X. Org. Lett. 2017; 19: 2102
- 40 Deshmukh DS, Bhanage BM. Synthesis 2019; 51: 2506
- 41 Meyer TH, Chesnokov GA, Ackermann L. ChemSusChem 2020; 13: 668
- 42 Cai CM, Zhang T, Kumar R, Wyman CE. J. Chem. Technol. Biotechnol. 2013; 89: 2
- 43 Mariscal R, Maireles-Torres P, Ojeda M, Sádaba I, Granados ML. Energy Environ. Sci. 2016; 9: 1144
- 44 Bozell JJ, Moëns L, Elliott DC, Wang Y, Neuenscwander GG, Fitzpatrick S, Bilski RJ, Jarnefeld J. Resour. Conserv. Recycl. 2000; 28: 227
- 45 Khoo HH, Wong L, Tan JK. N, Isoni V, Sharratt P. Resour. Conserv. Recyc. 2015; 95: 174
- 46 Leitch JA, Wilson PB, McMullin CL, Mahon MF, Bhonoah Y, Williams IH, Frost CG. ACS Catal. 2016; 6: 5520
- 47 Leitch JA, Cook HP, Bhonoah Y, Frost CG. J. Org. Chem. 2016; 81: 10081
- 48 Fumagalli F, Warratz S, Zhang S.-K, Rogge T, Zhu C, Stückl AC, Ackermann L. Chem. Eur. J. 2018; 24: 3984
- 49 Matsidik R, Luzio A, Hameury S, Komber H, McNeill CR, Caironi M, Sommer M. J. Mater. Chem. C 2016; 4: 10371
- 50 Aldrich TJ, Dudnik AS, Eastham ND, Manley EF, Chen LX, Chang RP. H, Melkonyan FS, Facchetti A, Marks TJ. Macromolecules 2018; 51: 9140
- 51 Monks BM, Fruchey ER, Cook SP. Angew. Chem. Int. Ed. 2014; 53: 11065
- 52 Fruchey ER, Monks BM, Cook SP. A. J. Am. Chem. Soc. 2014; 136: 13130
- 53 Alonso DM, Wettstein SG, Dumesic JA. Green Chem. 2013; 15: 584
- 54 Zhang Z. ChemSusChem 2016; 9: 156
- 55 Farrán M. Á, Cai C, Sandoval M, Xu Y, Liu J, Hernáiz MJ, Linhardt RJ. Chem. Rev. 2015; 115: 6811
- 56 Liguori F, Moreno-Marrodán C, Barbaro P. ACS Catal. 2015; 5: 1882
- 57 Santoro S, Ferlin F, Luciani L, Ackermann L, Vaccaro L. Green Chem. 2017; 19: 1601
- 58 Santoro S, Marrocchi A, Lanari D, Ackermann L, Vaccaro L. Chem. Eur. J. 2018; 24: 13383
- 59 Rasiņa D, Kahler-Quesada A, Ziarelli S, Warratz S, Cao H, Santoro S, Ackermann L, Vaccaro L. Green Chem. 2016; 18: 5025
- 60 Tian X, Yang F, Rasina D, Bauer M, Warratz S, Ferlin F, Vaccaro L, Ackermann L. Chem. Commun. 2016; 52: 9777
- 61 Ferlin F, Luciani L, Santoro S, Marrocchi A, Lanari D, Bechtoldt A, Ackermann L, Vaccaro LA. Green Chem. 2018; 20: 2888
- 62 Bechtoldt A, Baumert ME, Vaccaro L, Ackermann L. Green Chem. 2018; 20: 398
- 63 Bu Q, Rogge T, Kotek V, Ackermann L. Angew. Chem. Int. Ed. 2018; 57: 765
- 64 Bu Q, Gońka E, Kuciński K, Ackermann L. Chem. Eur. J. 2019; 25: 2213
- 65 Arsenov MA, Stoletova NV, Savel’yeva TF, Smol’yakov AF, Maleev VI, Loginov DA, Larionov VA. Org. Biomol. Chem. 2022; 20: 9385
- 66 Wu X, Lu Y, Jin Q, Dai W, Jia X, Ni H, Zhang X, Liu H, Zhao F. Org. Lett. 2020; 22: 9163
- 67 Meng H, Xu H, Zhou Z, Tang Z, Li Y, Zhou Y, Yi W, Wu X. Green Chem. 2022; 24: 7012
- 68 Ye L, Thompson BC. ACS Macro Lett. 2021; 10: 714
- 69 Roger J, Hierso J.-C. Eur. J. Org. Chem. 2018; 4953