Subscribe to RSS
DOI: 10.1055/a-2242-0543
Acidic Hydrogen-Tethered Electron-Deficient Acceptors for Phosphine-Catalyzed Annulations
The Natural Science Foundation of China (Nos. 21871293, 22071264)
Abstract
Nucleophilic phosphine-catalyzed annulations are recognized as practical and powerful tools for synthesizing various cyclic compounds. Phosphine acceptors play a key role in nucleophilic phosphine catalysis. The design and synthesis of new phosphine acceptors that are able to introduce new zwitterionic intermediates with new reactivities into phosphine-catalyzed annulations is highly desirable. We recently applied proton-shift principles in the design of new phosphine acceptors, and we synthesized several new acceptors. With the use of these acceptors, we have developed several novel phosphine-catalyzed annulation reactions. In this account, we present a brief introduction to the design and application of a series of acidic-hydrogen-tethered electron-deficient acceptors for phosphine-catalyzed annulation reactions, categorized according to the type of atom (N–H, O–H, C–H) to which the acidic hydrogen is bound.
1 Introduction
2 Phosphine Acceptors Tethered with an Acidic N–H Group
3 Phosphine Acceptors Tethered with an Acidic O–H Group
4 Phosphine Acceptors Tethered with an Acidic C–H Group
5 Conclusions
Key words
phosphine catalysis - annulation - cyclic compounds - acidic hydrogen - phosphine acceptorsPublication History
Received: 09 December 2023
Accepted after revision: 10 January 2024
Accepted Manuscript online:
10 January 2024
Article published online:
05 February 2024
© 2024. Thieme. All rights reserved
Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany
-
References
- 1a Wang Z, Xu X, Kwon O. Chem. Soc. Rev. 2014; 43: 2927
- 1b Xiao Y, Sun Z, Guo H, Kwon O. Beilstein J. Org. Chem. 2014; 10: 2089
- 1c Li W, Zhang J. Chem. Soc. Rev. 2016; 45: 1657
- 1d Xiao Y, Guo H, Kwon O. Aldrichimica Acta 2016; 49: 3
- 1e Wang T, Han X, Zhong F, Yao W, Lu Y. Acc. Chem. Res. 2016; 49: 1369
- 1f Li W, Zhang J. Chem. Soc. Rev. 2016; 45: 1657
- 1g Wei Y, Shi M. Org. Chem. Front. 2017; 4: 1876
- 1h Ni H, Chan W.-L, Lu Y. Chem. Rev. 2018; 118: 9344
- 1i Guo H, Fan YC, Sun Z, Wu Y, Kwon O. Chem. Rev. 2018; 118: 10049
- 1j Li E.-Q, Huang Y. Chem. Commun. 2020; 56: 680
- 1k Huang Y, Liao J, Wang W, Liu H, Guo H. Chem. Commun. 2020; 56: 15235
- 1l Xie C, Smaligo AJ, Song X.-R, Kwon O. ACS Cent. Sci. 2021; 7: 536
- 2 Zhou L, Yuan C, Zeng Y, Liu H, Wang C, Gao X, Wang Q, Zhang C, Guo H. Chem. Sci. 2018; 9: 1831
- 3 Liu M, Zhou L, Shi W, Hu Y, Liao J, Duan Z, Wang W, Wu Y, Zheng B, Guo H. Org. Lett. 2021; 23: 7703
- 4 Shi W, Zhou L, Mao B, Wang Q, Wang C, Zhang C, Li X, Xiao Y, Guo H. J. Org. Chem. 2019; 84: 679
- 5 Gao Z, Xie L, Ji L, Ma X, Li X, Liu H, Guo H. RSC Adv. 2021; 11: 40136
- 6 Cai W, Zhou Y, He Y, Huang Y. Chem. Commun. 2021; 57: 8985
- 7 Zhou L, Yuan C, Zeng Y, Wang Q, Wang C, Liu M, Wang W, Wu Y, Zheng B, Guo H. Org. Lett. 2019; 21: 4882
- 8 Zhou L, Zeng Y, Gao X, Wang Q, Wang C, Wang B, Wang W, Wu Y, Zheng B, Guo H. Chem. Commun. 2019; 55: 10464
- 9 Trost BM, Jiao ZW. J. Am. Chem. Soc. 2020; 142: 21645
- 10 Liu M, Liao J, Dong Y, Shi W, Hu Y, Xu J, Wang W, Xu Y, Guo H. Adv. Synth. Catal. 2022; 364: 2146
- 11 Liao J, Han Q, Liu M, Shi W, Xu J, Wang W, Wu Y, Guo H. Adv. Synth. Catal. 2022; 364: 3283
For selected reviews, see: