Synthesis 2024; 56(08): 1273-1284
DOI: 10.1055/a-2244-1600
feature
New Trends in Organic Synthesis from Chinese Chemists

Total Synthesis of Daphniphyllum Alkaloids: (+)-Daphlongamine E, (+)-Calyciphylline R, and (–)-10-Deoxydaphnipaxianine A

Yan Zhang
,
Yuye Chen
,
Jing Xu
Financial support from NSFC (No. 21971104 and 22271136), Shenzhen Key Laboratory of Small Molecule Drug Discovery and Synthesis (ZDSYS20190902093215877), Shenzhen Science, Technology and Innovation Commission (JCYJ20220814203252001), Guangdong Provincial Key Laboratory of Catalysis (No. 2020B121201002), Guangdong Innovative Program (No. 2019BT02Y335), Education Department of Guangdong Province, Key research projects in colleges and universities in Guangdong Province (2021ZDZX2035), Shenzhen Nobel Prize Scientists Laboratory Project (C17783101) and Innovative Team of Universities in Guangdong Province (2020KCXTD016) is greatly appreciated.


Abstract

Here, we wish to describe our detailed efforts in the total synthesis of three calyciphylline A-type alkaloids, namely (+)-daphlongamine E, (+)-calyciphylline R, and (–)-10-deoxydaphnipaxianine A. Important steps in our approach include a Pt-catalyzed nitrile hydration, a Babler–Dauben rearrangement, a novel selective amide reduction tactic, and an oxidative Nazarov cyclization via an unfunctionalized tertiary divinyl carbinol (TDC).

Supporting Information



Publication History

Received: 12 December 2023

Accepted after revision: 12 January 2024

Accepted Manuscript online:
12 January 2024

Article published online:
13 February 2024

© 2024. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

    • 1a Guo L.-D, Chen Y, Xu J. Acc. Chem. Res. 2020; 53: 2726
    • 1b Kobayashi J, Kubota T. Nat. Prod. Rep. 2009; 26: 936
    • 1c Chattopadhyay AK, Hanessian S. Chem. Rev. 2017; 117: 4104
    • 1d Zhong J, Wang H, Zhang Q, Gao S. The Alkaloids: Chemistry and Biology, Vol. 85. Knölker H.-J. Academic Press; London: 2021: 113-176
    • 1e Kang B, Jakubec P, Dixon DJ. Nat. Prod. Rep. 2014; 31: 550
    • 2a Li Z.-Y, Guo Y.-W. Youji Huaxue 2007; 27: 565
    • 2b Liang X, Yang X.-Z, Chen L, Jiang S, Chen Y.-D, Deng Q.-Y, Chen X.-G, Yuan J.-Q. Med. Chem. Res. 2021; 30: 1
    • 2c Wu H, Zhang X, Ding L, Chen S, Yang J, Xu X. Planta Med. 2013; 79: 1589
    • 2d Xu J.-B, Zhang H, Gan L.-S, Han Y.-S, Wainberg MA, Yue J.-M. J. Am. Chem. Soc. 2014; 136: 7631
    • 3a Heathcock CH, Davidsen SK, Mills S, Sanner MA. J. Am. Chem. Soc. 1986; 108: 5650
    • 3b Ruggeri RB, Heathcock CH. J. Org. Chem. 1990; 55: 3714
    • 3c Heathcock CH, Kath JC, Ruggeri RB. J. Org. Chem. 1995; 60: 1120
    • 3d Ruggeri RB, Hansen MM, Heathcock CH. J. Am. Chem. Soc. 1988; 110: 8734
    • 3e Piettre S, Heathcock CH. Science 1990; 248: 1532
    • 3f Stafford JA, Heathcock CH. J. Org. Chem. 1990; 55: 5433
    • 3g Ruggeri RB, McClure KF, Heathcock CH. J. Am. Chem. Soc. 1989; 111: 1530
    • 3h Heathcock CH, Stafford JA, Clark DL. J. Org. Chem. 1992; 57: 2575
  • 4 Weiss ME, Carreira EM. Angew. Chem. Int. Ed. 2011; 50: 11501
    • 5a Lu ZY, Li Y, Deng J, Li A. Nat. Chem. 2013; 5: 679
    • 5b Li J, Zhang WH, Zhang F, Chen Y, Li A. J. Am. Chem. Soc. 2017; 139: 14893
    • 5c Chen Y, Zhang WH, Ren L, Li J, Li A. Angew. Chem. Int. Ed. 2018; 57: 952
    • 5d Zhang WH, Ding M, Li J, Guo ZC, Lu M, Chen Y, Liu LC, Shen YH, Li A. J. Am. Chem. Soc. 2018; 140: 4227
    • 5e Zhang WH, Lu M, Ren L, Zhang X, Liu SN, Ba MY, Yang P, Li A. J. Am. Chem. Soc. 2023; 145: 26569
    • 6a Shvartsbart A, Smith AB. III. J. Am. Chem. Soc. 2014; 136: 870
    • 6b Shvartsbart A, Smith AB. III. J. Am. Chem. Soc. 2015; 137: 3510
  • 7 Yamada R, Adachi Y, Yokoshima S, Fukuyama T. Angew. Chem. Int. Ed. 2016; 55: 6067
    • 8a Shi H, Michaelides IN, Darses B, Jakubec P, Nguyen QN. N, Paton RS, Dixon DJ. J. Am. Chem. Soc. 2017; 139: 17755
    • 8b Kučera R, Ellis SR, Yamazaki K, Cooke JH, Chekshin N, Christensen KE, Hamlin TA, Dixon DJ. J. Am. Chem. Soc. 2023; 145: 5422
    • 9a Chen X, Zhang H.-J, Yang X, Lv H, Shao X, Tao C, Wang H, Cheng B, Li Y, Guo J, Zhang J, Zhai H. Angew. Chem. Int. Ed. 2018; 57: 947
    • 9b Su S, Lin C, Zhai H. Angew. Chem. Int. Ed. 2023; 62: e202303402
    • 10a Xu B, Wang B, Xun W, Qiu FG. Angew. Chem. Int. Ed. 2019; 58: 5754
    • 10b Wang B, Xu B, Xun W, Guo Y, Zhang J, Qiu FG. Angew. Chem. Int. Ed. 2021; 60: 9439
  • 11 Zhong J, Chen K, Qiu Y, He H, Gao S. Org. Lett. 2019; 21: 3741
    • 12a Hugelshofer CL, Palani V, Sarpong R. J. Am. Chem. Soc. 2019; 141: 8431
    • 12b Hugelshofer CL, Palani V, Sarpong R. J Org. Chem. 2019; 84: 14069
  • 13 Xu G, Wu J, Li L, Lu Y, Li C. J. Am. Chem. Soc. 2020; 142: 15240
  • 14 Cao M.-Y, Ma B.-J, Gu Q.-X, Fu B, Lu H.-H. J. Am. Chem. Soc. 2022; 144: 5750
    • 15a Li L.-X, Min L, Yao T.-B, Qiao C, Tian P.-L, Sun J.-W, Li C.-C. J. Am. Chem. Soc. 2022; 144: 18823
    • 15b Zou Y.-P, Lai Z.-L, Zhang M.-W, Peng J, Ning S, Li C.-C. J. Am. Chem. Soc. 2023; 145: 10998
    • 16a Chen Y, Hu J, Guo L.-D, Zhong W, Ning C, Xu J. Angew. Chem. Int. Ed. 2019; 58: 7390
    • 16b Guo L.-D, Hou J, Tu W, Zhang Y, Zhang Y, Chen L, Xu J. J. Am. Chem. Soc. 2019; 141: 11713
    • 16c Guo L.-D, Hu J, Zhang Y, Tu W, Zhang Y, Pu F, Xu J. J. Am. Chem. Soc. 2019; 141: 13043
    • 16d Guo L.-D, Zhang Y, Hu J, Ning C, Fu H, Chen Y, Xu J. Nat. Commun. 2020; 11: 3538
    • 16e Zhang Y, Chen Y, Song M, Tan B, Jiang Y, Yan C, Jiang Y, Hu X, Zhang C, Chen W, Xu J. J. Am. Chem. Soc. 2022; 144: 16042
    • 16f Hu J, Guo L.-D, Chen W, Jiang Y, Pu F, Ning C, Xu J. Org. Lett. 2022; 24: 7416
    • 16g Hu J, Xu J. Chin. Chem. Lett. 2024; 35: 108733

      For synthetic studies towards the calyciphylline A-type alkaloids published after ref 1e, see:
    • 17a Coussanes G, Bonjoch J. Org. Lett. 2017; 19: 878
    • 17b Diaba F, Martínez-Laporta A, Coussanes G, Fernández I, Bonjoch J. Tetrahedron 2015; 71: 3642
    • 17c Jansana S, Diaba F, Bonjoch J. Org. Lett. 2019; 21: 5757
    • 17d Jansana S, Coussanes G, Puig J, Diaba F, Bonjoch J. Helv. Chim. Acta 2019; 102: e1900188
    • 17e Sasano Y, Koyama J, Yoshikawa K, Kanoh N, Kwon E, Iwabuchi Y. Org. Lett. 2018; 20: 3053
    • 17f Li H, Qiu Y, Zhao C, Yuan Z, Xie X, She X. Chem. Asian J. 2014; 9: 1274
    • 17g Wang L, Xu C, Chen L, Hao X.-J, Wang D.-Z. Org. Lett. 2014; 16: 1076
    • 17h Deng M, Yao Y, Li X, Li N, Zhang X, Liang G. Org. Lett. 2019; 21: 3290
    • 17i Shao H, Bao W, Jing Z.-R, Wang Y.-P, Zhang F.-M, Wang S.-H, Tu Y.-Q. Org. Lett. 2017; 19: 4648
    • 17j Xiong X, Li Y, Lu Z, Wan M, Deng J, Wu S, Shao H, Li A. Chem. Commun. 2014; 50: 5294
    • 17k Ibrahim AA, Golonka AN, Lopez AM, Stockdill JL. Org. Lett. 2014; 16: 1072
    • 17l Stockdill JL, Lopez AM, Ibrahim AA. Tetrahedron Lett. 2015; 56: 3503
    • 17m Guo J, Li Y, Cheng B, Xu T, Tao C, Yang X, Zhang D, Yan G, Zhai HB. Chem. Asian J. 2015; 10: 865
    • 17n Ma D, Cheng H, Huang C, Xu L. Tetrahedron Lett. 2015; 56: 2492
    • 17o Wang W, Li G.-P, Wang S.-F, Shi Z.-F, Cao X.-P. Chem. Asian J. 2015; 10: 377
    • 17p Zhong J, He H, Gao S. Org. Chem. Front. 2019; 6: 3781
    • 17q Sun H.-Y, Wu G.-M, Xie X.-G. Chin. Chem. Lett. 2019; 30: 1538
    • 17r Nakamura H, Kawakami M, Tsukano C, Takemoto Y. Synlett 2019; 30: 2253
    • 17s Nakamura H, Kawakami M, Tsukano C, Takemoto Y. Chem. Eur. J. 2019; 25: 8701
    • 17t Baidilov D, Miskey S, Hudlicky T. Eur. J. Org. Chem. 2019; 2019: 7590
    • 17u Wang H, Dong Q, Xie Q, Tang P. Chin. Chem. Lett. 2020; 31: 685
    • 17v Kishi J.-i, Ikeuchi K, Suzuki T, Tanino K. Synlett 2022; 33: 196
    • 17w Marquès C, Diaba F, Gómez-Bengoa E, Bonjoch J. J. Org. Chem. 2022; 87: 10516
  • 18 Xing X, Xu C, Chen B, Li C, Virgil SC, Grubbs RH. J. Am. Chem. Soc. 2018; 140: 17782
    • 19a Hutchins RO, Kacher M, Rua L. J. Org. Chem. 1975; 40: 923
    • 19b Kabalka GW, Yang DT. C, Baker JD. J. Org. Chem. 1976; 41: 574
  • 20 Lee K.-S, Zhugralin AR, Hoveyda AH. J. Am. Chem. Soc. 2009; 131: 7253
  • 21 Kim KE, Li J, Grubbs RH, Stoltz BM. J. Am. Chem. Soc. 2016; 138: 13179
  • 22 Enquist JA. Jr, Stoltz BM. Nature 2008; 453: 1228
    • 23a Evans DA, Fu GC, Hoveyda AH. J. Am. Chem. Soc. 1992; 114: 6671
    • 23b Evans DA, Fu GC, Anderson BA. J. Am. Chem. Soc. 1992; 114: 6679
    • 24a Dauben WG, Michno DM. J. Org. Chem. 1977; 42: 682
    • 24b Shibuya M, Tomizawa M, Iwabuchi Y. J. Org. Chem. 2008; 73: 4750

    • For selected examples of Dauben–Michno rearrangement using tertiary divinyl carbinols, see:
    • 24c Majetich G, Condon S, Hull K, Ahmad S. Tetrahedron Lett. 1989; 30: 1033
    • 24d Vatèle J.-M. Synlett 2009; 2143
    • 24e Vatèle J.-M. Tetrahedron 2010; 66: 904
    • 24f Li T, Wu G, Feng S, Wang Z, Xie X, She X. Org. Biomol. Chem. 2018; 16: 8491
  • 25 Matheau-Raven D, Gabriel P, Leitch JA, Almehmadi YA, Yamazaki K, Dixon DJ. ACS Catal. 2020; 10: 8880
  • 26 Bolotin DS, Bokach NA, Demakova YM, Kukushkin VY. Chem. Rev. 2017; 117: 13039
    • 27a Jiménez-Núñez E, Molawia K, Echavarren AM. Chem. Commun. 2009; 7327
    • 27b Muratake H, Natsume M. Tetrahedron 2006; 62: 7071
    • 27c Muratake H, Natsume M. Tetrahedron Lett. 2002; 43: 2913
    • 27d Farney EP, Feng SS, Schäfers F, Reisman SE. J. Am. Chem. Soc. 2018; 140: 1267
    • 27e Ishihara M, Masatsugu Y, Uneyama K. Tetrahedron 1992; 48: 10265
    • 27f Zeng B, Cheng Y, Zheng K, Liu S, Shen L, Hu J, Li Y, Pan X. Bioorg. Chem. 2021; 111: 104973
  • 28 Zhang H, Zhang D, Li J.-Y, Shyaula LS, Li J, Yue J.-M. RSC Adv. 2016; 6: 44402
  • 29 Li C.-S, Di Y.-T, Zhang Q, Zhang Y, Tan C.-J, Hao X.-J. Helv. Chim. Acta 2009; 92: 653
  • 30 Lu Y, Gao K, Wang X, Zhang W, Ma N, Tang H. Molecules 2014; 19: 3055
  • 31 Zhang H, Yang S.-P, Fan C.-Q, Ding J, Yue J.-M. J. Nat. Prod. 2006; 69: 553
    • 32a Hoffmann RW. Synthesis 2006; 3531
    • 32b Young IS, Baran PS. Nat. Chem. 2009; 1: 193
    • 32c Saicic RN. Tetrahedron 2014; 70: 8183
    • 32d Protecting-Group-Free Organic Synthesis: Improving Economy and Efficiency. Fernandes RA. Wiley; Hoboken: 2018
    • 32e Hui C, Chen F, Pu F, Xu J. Nat. Rev. Chem. 2019; 3: 85
  • 33 CCDC 2151263 contains the supplementary crystallographic data for this paper. The data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/getstructures
  • 34 The authors of the original isolation paper, see ref. 30, have confirmed the correctness of our optical rotation data via private communication.