Subscribe to RSS
Please copy the URL and add it into your RSS Feed Reader.
https://www.thieme-connect.de/rss/thieme/en/10.1055-s-00000084.xml
Synthesis 2024; 56(10): 1608-1618
DOI: 10.1055/a-2250-8050
DOI: 10.1055/a-2250-8050
paper
Nicholas Reactions of Pentadiynyl–Co2(CO)6 Cations. Synthesis of Antimalarial Hinokiresinol Analogues
Funding was provided by the Natural Sciences and Engineering Research Council (NSERC Canada) Discovery Grant program (RGPIN-2022-04761).
Abstract
Penta-1,4-diyn-3-ol–Co2(CO)6 complexes undergo Lewis acid mediated Nicholas reactions with high selectivity at the C-3 site, to give skipped (1,4-)diyne complexes. The compatible nucleophiles have a wide range of reactivity. The methodology has been applied to the synthesis of both (E)- and (Z)-isomers of a hinokiresinol and nyasol analogue, the (E)-isomer of which is known to have elevated antiplasmodial and antimalarial activity.
Key words
propargyl - carbocations - alkyne complexes - diynes - Lewis acids - norneolignans - antimalarial agentsSupporting Information
- Supporting information for this article is available online at https://doi.org/10.1055/a-2250-8050.
- Supporting Information
Publication History
Received: 18 September 2023
Accepted after revision: 22 January 2024
Accepted Manuscript online:
22 January 2024
Article published online:
14 February 2024
© 2024. Thieme. All rights reserved
Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany
-
References
- 1a Green JR, Nicholas KM. Org. React. 2020; 103: 931
- 1b Kann N. Curr. Org. Chem. 2012; 16: 322
- 1c Shea JM. In Name Reactions for Homologations, Part 1. Li JJ. Wiley; Hoboken: 2009: 284-298
- 1d Diaz DD, Betancort JM, Martín VS. Synlett 2007; 343
- 1e Teobald BJ. Tetrahedron 2002; 58: 4133
- 1f Green JR. Curr. Org. Chem. 2001; 5: 809
- 1g Caffyn AJ. M, Nicholas KM. In Comprehensive Organometallic Chemistry II, Vol. 12, Chap. 7.1. Abel EW, Stone FG. A, Wilkinson G. Pergamon; Oxford: 1995
- 2a Padmanabhan S, Nicholas KM. Tetrahedron Lett. 1982; 23: 2555
- 2b DiMartino J, Green JR. Tetrahedron 2006; 62: 1402
- 2c de la Torre MC, Asenjo M, Ramírez-Lopez P, Sierra MA. Eur. J. Org. Chem. 2015; 1054
- 2d Mahmood A, Ngenzi R, Penner PM, Green JR. Synlett 2016; 27: 1245
- 3a Shiyuba S, Isobe M. Tetrahedron 1998; 54: 6677
- 3b Lobo F, Gomez AM, Miranda S, Lopez JC. Chem. Eur. J. 2014; 20: 10492
- 3c Kolodziej I, Green JR. Org. Biomol. Chem. 2015; 13: 10852
- 4a Liu T, Liu Y, Guo W. Org. Chem. Front. 2022; 9: 3312
- 4b Liu Y, Liu T, Yan B, Wei K, Guo W. Adv. Synth. Catal. 2022; 364: 916
- 4c Mahrwald R, Quint S. Tetrahedron 2000; 56: 7463
- 5a Mayr H, Heilmann W. Tetrahedron 1986; 42: 6657
- 5b Giner X, Trillo P, Nájera C. J. Organomet. Chem. 2011; 696: 357
- 5c Gu H, Sun X, Wang Y, Wu YH, Wu P. RSC Adv. 2018; 8: 1737
- 6a Kimura M, Horino Y, Mukai R, Tanaka S, Tamaru Y. J. Am. Chem. Soc. 2001; 123: 10401
- 6b Christie SD. R, Warrington AD, Lunniss CJ. Synthesis 2009; 148
- 6c Gruber S, Zaitsev AB, Wӧrle M, Pregosin PS. Organometallics 2008; 27: 3796
- 6d Donaldson WA, Chaudhury S. Eur. J. Org. Chem. 2009; 3831
- 6e Knölker HJ. In Organometallics in Synthesis . Schlosser M. Wiley; Hoboken: 2013: 545-776
- 7a Takeuchi R, Tanabe K. Angew. Chem. Int. Ed. 2000; 39: 1975
- 7b Lipowsky G, Miller N, Helmchen G. Angew. Chem. Int. Ed. 2004; 43: 4595
- 7c Tang S, Li Z, Shao Y, Sun J. Org. Lett. 2019; 21: 7228
- 7d Zheng W.-H, Sun N, Hou X.-L. Org. Lett. 2005; 7: 5151
- 7e Trost BM, Hildbrand S, Dogra K. J. Am. Chem. Soc. 1999; 121: 10416
- 7f Trost BM, Brennan MK. Org. Lett. 2007; 9: 3961
- 7g Li B, Li C. Synlett 2022; 33: 1863
- 8a Schwier T, Rubin M, Gevorgyan V. Org. Lett. 2004; 6: 1999
- 8b Mahrwald R, Quint A. Tetrahedron Lett. 2001; 42: 1655
- 8c Teng G, Mo S, Pan J, Wu N, Wanf H, Pan Y. Synthesis 2016; 48: 455
- 9a Melikyan GG, Anker B. Organometallics 2015; 34: 4194
- 9b Melikyan GG, Davis R, Anker B, Meron D, Duncan K. Organometallics 2016; 35: 4060
- 10 For an alternative Nicholas reaction based approach to skipped diynes, see: Guo R, Gibe R, Green JR. Can. J. Chem. 2004; 82: 366
- 11 Skytte DM, Nielsen SF, Chen M, Zhai L, Olsen CE, Christensen SB. J. Med. Chem. 2006; 49: 436
- 12a Nguyen T.-H.-T, Pham H.-V.-T, Pham N.-K.-T, Quach N.-D.-P, Pudhom K, Hansen PE, Nguyen K.-P.-P. Bioorg. Med. Chem. Lett. 2015; 25: 2366
- 12b Li Y.-F, Hu L.-H, Lou F.-C, Hong J.-R, Li J, Shen Q. J. Asian Nat. Prod. Res. 2005; 7: 43
- 13 Mukai C, Suzuki K, Nagami K, Hanaoka M. J. Chem. Soc., Perkin Trans. 1 1992; 141
- 14 Eisler S, Chahal N, McDonald R, Tykwinski RR. Chem. Eur. J. 2003; 9: 2542
- 15 St Onge B, Green JR. Synlett 2017; 28: 2923
- 16a Mayr H, Kempf B, Ofial AR. Acc. Chem. Res. 2003; 36: 66
- 16b Tokuyasu T, Mayr H. Eur. J. Org. Chem. 2004; 2791
- 17 Review: Marciniec B, Maciejewski H, Pietraszuk C, Pawluć P. In Hydrosilylation. A Comprehensive Review on Recent Advances . Marciniec B. Springer; Dordrecht: 2009: 53-86
- 18 Magre M, Szewczyk M, Rueping M. Org. Lett. 2020; 22: 1594
- 19a Yu J, Gaunt MJ, Spencer JB. J. Org. Chem. 2002; 67: 4627
- 19b Schwarz M, Graminski GF, Waters RM. J. Org. Chem. 1986; 51: 260
- 19c Clark DA, Clark JR, Diver ST. Org. Lett. 2008; 10: 2055
- 20 Kim IS, Dong GR, Jung YH. J. Org. Chem. 2007; 72: 5424
- 21 Muresan M. M.Sc. Thesis 2022
- 22 Still WC, Kahn M, Mitra A. J. Org. Chem. 1978; 43: 2923
Pd:
Ru:
Fe:
See also:
Rh: