Klinische Neurophysiologie 2024; 55(03): 163-180
DOI: 10.1055/a-2251-0394
CME-Fortbildung

Untersuchungen des visuellen Systems zur Diagnose und Prognose neuroinflammatorischer Erkrankungen

Relevanz für den klinischen AlltagParaclinical Tests of the Visual Pathway for the Diagnosis and Prognosis of Neuroinflammatory DiseasesRelevance for the Clinical Practice
Shaumiya Sellathurai
,
Martin Hardmeier
,
Athina Papadopoulou

Das visuelle System ist häufig betroffenen bei neuroinflammatorischen Erkrankungen, sowohl im Sinne einer Optikusneuritis (ON) als auch durch Läsionen entlang der Sehbahn, z.B. in der Sehstrahlung. Verschiedene Methoden können sowohl die Struktur als auch die Funktion des visuellen Systems untersuchen. In diesem Artikel werden die unterschiedlichen Diagnostikinstrumente mit Fokus auf die klinische Relevanz diskutiert.

Abstract

The visual system is frequently affected in neuroinflammatory diseases. While the typical clinical manifestation is optic neuritis (ON), lesions along the entire visual pathway are common. Several paraclinical tests can be used to quantify abnormalities of the visual pathway in neuroinflammatory disorders. Although an optic nerve affection is currently not included in the diagnostic criteria of multiple sclerosis (MS), these tests may be very sensitive to detect asymptomatic and symptomatic lesions at early diseases stages. Moreover, they can contribute to the differential diagnosis among neuroinflammatory diseases. Last, they may play a role in the prognosis of visual deficits, and even of overall disability.

In this article, we discuss three paraclinical tests: optical coherence tomography (OCT) of the retina, magnetic resonance imaging (MRI) of the optic nerve and visual evoked potentials (VEP), including their advantages and limitations, with a focus on their role in clinical practice.

OCT is a non-invasive, quick imaging technique that measures the thickness of retinal layers. It can quantify atrophy of the combined ganglion cell- and inner plexiform layer (GCIPL) and the peripapillary retinal nerve fiber layer (pRNFL) after ON. Moreover, it can show subclinical atrophy of these layers, especially in patients with MS. The pattern of atrophy in the OCT can contribute to the differential diagnosis among neuroinflammatory diseases.

MRI is an imaging method that plays a critical role in the diagnosis and monitoring of MS. It can capture both symptomatic and asymptomatic lesions along the entire visual pathway. MRI of the optic nerve needs specific sequences with fat saturation and possibly (for acute ON) gadolinium. The length and location of the optic nerve lesions may be useful in the differential diagnosis (e. g. MS versus neuromyelitis optica spectrum disorders).

VEP is an electrophysiological measure of the afferent visual pathway. In acute ON, the P100 latency of the VEP may be prolonged, or there may be a conduction block (absence of P100 wave). In the subacute and chronic phase after ON, VEP often remain asymmetric/abnormal. Thus, the VEP can be particularly useful in quantifying subclinical/prior optic nerve affection in neuroinflammatory diseases. In addition, VEP are possibly also markers of remyelination.



Publikationsverlauf

Artikel online veröffentlicht:
09. September 2024

© 2024. Thieme. All rights reserved.

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • Literatur

  • 1 Magaña SM, Keegan BM, Weinshenker BG. et al. Beneficial plasma exchange response in central nervous system inflammatory demyelination. Arch Neurol 2011; 68: 870-878
  • 2 Heesen C, Böhm J, Reich C. et al. Patient perception of bodily functions in multiple sclerosis: gait and visual function are the most valuable. Mult Scler 2008; 14: 988-991
  • 3 Vidal-Jordana A, Rovira A, Arrambide G. et al Optic nerve topography in multiple sclerosis diagnosis: the utility of visual evoked potentials. Neurology 2021; 96: e482-e490
  • 4 Fazzone HE, Lefton DR, Kupersmith MJ. Optic neuritis: correlation of pain and magnetic resonance imaging. Ophthalmology 2003; 110: 1646-1649
  • 5 Petzold A, Fraser CL, Abegg M. et al. Diagnosis and classification of optic neuritis. Lancet Neurol 2022; 21: 1120-1134
  • 6 Balk LJ, Twisk JWR, Steenwijk MD. et al. A dam for retrograde axonal degeneration in multiple sclerosis?. J Neurol Neurosurg Psychiat 2014; 85: 782-789
  • 7 Saidha S, Al-Louzi O, Ratchford JN. et al. Optical coherence tomography reflects brain atrophy in multiple sclerosis: a four-year study. Ann Neurol 2015; 78: 801-813
  • 8 Cagol A, Fuertes NC, Stoessel M. et al. Optical coherence tomography reflects clinically relevant gray matter damage in patients with multiple sclerosis. J Neurol 2023; 270: 2139-2148
  • 9 Hardmeier M, Leocani L, Fuhr P. A new role for evoked potentials in MS? Repurposing evoked potentials as biomarkers for clinical trials in MS. Mult Scler 2017; 23: 1309-1319
  • 10 Wu Z, Huang J, Dustin L. et al. Signal strength is an important determinant of accuracy of nerve fiber layer thickness measurement by optical coherence tomography. J Glaucoma 2009; 18: 213-216
  • 11 Knier B, Schmidt P, Aly L. et al. Retinal inner nuclear layer volume reflects response to immunotherapy in multiple sclerosis. Brain 2016; 139: 2855-2863
  • 12 Bsteh G, Hegen H, Altmann P. et al. Diagnostic performance of adding the optic nerve region assessed by optical coherence tomography to the diagnostic criteria for multiple sclerosis. Neurology 2023; 101: e784-e793
  • 13 Vidal-Jordana A, Rovira A, Calderon W. et al. Adding the optic nerve in multiple sclerosis diagnostic criteria: a longitudinal, prospective, multicenter study. Neurology 2024; 102: e200805
  • 14 Britze J, Pihl-Jensen G, Frederiksen JL. Retinal ganglion cell analysis in multiple sclerosis and optic neuritis: a systematic review and meta-analysis. J Neurol 2017; 264: 1837-1853
  • 15 Costello F, Coupland S, Hodge W. et al. Quantifying axonal loss after optic neuritis with optical coherence tomography. Ann Neurol 2006; 59: 963-969
  • 16 Gabilondo I, Martínez-Lapiscina EH, Martínez-Heras E. et al. Trans-synaptic axonal degeneration in the visual pathway in multiple sclerosis. Ann Neurol 2014; 75: 98-107
  • 17 Bsteh G, Hegen H, Altmann P. et al. Retinal layer thinning is reflecting disability progression independent of relapse activity in multiple sclerosis. Mult Scler J Exp Transl Clin 2020; 6: 2055217320966344
  • 18 Krämer J, Balloff C, Weise M. et al. Evolution of retinal degeneration and prediction of disease activity in relapsing and progressive multiple sclerosis. Nat Commun 2024; 15: 5243
  • 19 Petzold A, Wattjes MP, Costello F. et al. The investigation of acute optic neuritis: a review and proposed protocol. Nat Rev Neurol 2014; 10: 447-458
  • 20 Banwell B, Bennett JL, Marignier R. et al. Diagnosis of myelin oligodendrocyte glycoprotein antibody-associated disease: international MOGAD Panel proposed criteria. Lancet Neurol 2023; 22: 268-282
  • 21 Wingerchuk DM, Banwell B, Bennett JL. et al. International consensus diagnostic criteria for neuromyelitis optica spectrum disorders. Neurology 2015; 85: 177-189
  • 22 Wattjes MP, Ciccarelli O, Reich DS. et al. MAGNIMS-CMSC-NAIMS consensus recommendations on the use of MRI in patients with multiple sclerosis. Lancet Neurol 2021; 20: 653-670
  • 23 Hickman SJ, Toosy AT, Miszkiel KA. et al. Visual recovery following acute optic neuritis – a clinical, electrophysiological and magnetic resonance imaging study. J Neurol 2004; 251: 996-1005
  • 24 Miller DH, Newton MR, van der Poel JC. et al. Magnetic resonance imaging of the optic nerve in optic neuritis. Neurology 1988; 38: 175-179
  • 25 Murumkar V, Priyadarshini Baishya P, Kulanthaivelu K. et al. Comparison of 3D Double Inversion Recovery (DIR) versus 3D Fluid Attenuated Inversion Recovery (FLAIR) in precise diagnosis of acute optic neuritis. Eur J Radiol 2022; 155: 110505
  • 26 Pravatà E, Roccatagliata L, Sormani MP. et al. Dedicated 3D-T2-STIR-ZOOMit imaging improves demyelinating lesion detection in the anterior visual pathways of patients with multiple sclerosis. AJNR Am J Neuroradiol 2021; 42: 1061-1068
  • 27 Klistorner A, Sriram P, Vootakuru N. et al. Axonal loss of retinal neurons in multiple sclerosis associated with optic radiation lesions. Neurology 2014; 82: 2165-2172
  • 28 Denis M, Woillez JP, Smirnov VM. et al. Optic nerve lesion length at the acute phase of optic neuritis is predictive of retinal neuronal loss. Neurol Neuroimmunol Neuroinflamm 2022; 9: e1135
  • 29 Optic Neuritis Study Group. Multiple sclerosis risk after optic neuritis: final optic neuritis treatment trial follow-up. Arch Neurol 2008; 65: 727-732
  • 30 Ramanathan S, Prelog K, Barnes EH. et al. Radiological differentiation of optic neuritis with myelin oligodendrocyte glycoprotein antibodies, aquaporin-4 antibodies, and multiple sclerosis. Mult Scler 2016; 22: 470-482
  • 31 Storoni M, Davagnanam I, Radon M. et al. Distinguishing optic neuritis in neuromyelitis optica spectrum disease from multiple sclerosis: a novel magnetic resonance imaging scoring system. J Neuroophthalmol 2013; 33: 123-127
  • 32 Khanna S, Sharma A, Huecker J. et al. Magnetic resonance imaging of optic neuritis in patients with neuromyelitis optica versus multiple sclerosis. J Neuroophthalmol 2012; 32: 216-220
  • 33 Tobimatsu S, Celesia GG. Studies of human visual pathophysiology with visual evoked potentials. Clin Neurophysiol 2006; 117: 1414-1433
  • 34 Bach M, Haarmeier T, Dichgans J. Visuell evozierte Potenziale und Elektroretinogramm. In: Stöhr M, Dichgans J, Buettner UW, Hess CW. Evozierte Potenziale. Berlin: Springer; 2005: 253-368
  • 35 Narayanan D, Cheng H, Tang RA, Frishman LJ. Reproducibility of multifocal visual evoked potential and traditional visual evoked potential in normal and multiple sclerosis eyes. Doc Ophthalmol; 2015 Feb 130. 31-41 Epub 2014 Oct 29. PMID: 25351235
  • 36 Baum et al. in Stöhr 2005; p 284 Evozierte Potenziale: SEP – VEP – AEP – EKP – MEP Manfred Stöhr, Johannes Dichgans, Ulrich Büttner, Christian W. Hess Springer-Verlag, 10.12.2005 – 635 Seiten
  • 37 Pihl-Jensen G, Schmidt MF, Frederiksen JL. Multifocal visual evoked potentials in optic neuritis and multiple sclerosis: a review. Clin Neurophysiol 2017; 128: 1234-1245
  • 38 Keltner JL, Johnson CA, Cello KE. et al. Visual field profile of optic neuritis: a final follow-up report from the optic neuritis treatment trial from baseline through 15 years. Arch Ophthalmol 2010; 128: 330-337
  • 39 Papadopoulou A, Pfister A, Tsagkas C. et al. Visual evoked potentials in multiple sclerosis: P100 latency and visual pathway damage including the lateral geniculate nucleus. Clinical Neurophysiology 2024; 161: 122-132
  • 40 Solomon AJ, Bourdette DN, Cross AH. et al. The contemporary spectrum of multiple sclerosis misdiagnosis: a multicenter study. Neurology 2016; 87: 1393-1399
  • 41 Raz N, Dotan S, Chokron S. et al. Demyelination affects temporal aspects of perception: an optic neuritis study. Ann Neurol 2012; 71: 531-538
  • 42 Cadavid D, Balcer L, Galetta S. et al. Safety and efficacy of opicinumab in acute optic neuritis (RENEW): a randomised, placebo-controlled, phase 2 trial. Lancet Neurol 2017; 16: 189-199
  • 43 Heidari M, Radcliff AB, McLellan GJ. et al. Evoked potentials as a biomarker of remyelination. Proc Natl Acad Sci USA 2019; 116: 27074-27083
  • 44 Cordano C, Sin JH, Timmons G. et al. Validating visual evoked potentials as a preclinical, quantitative biomarker for remyelination efficacy. Brain 2022; 145: 3943-3952
  • 45 Leocani L, Rovaris M, Boneschi FM. et al. Multimodal evoked potentials to assess the evolution of multiple sclerosis: a longitudinal study. J Neurol Neurosurg Psychiatry 2006; 77: 1030-1035
  • 46 Schlaeger R, Hardmeier M, D'Souza M. et al. Monitoring multiple sclerosis by multimodal evoked potentials: numerically versus ordinally scaled scoring systems. Clin Neurophysiol 2016; 127: 1864-1871
  • 47 Hardmeier M, Schlaeger R, Lascano AM. et al. Prognostic biomarkers in primary progressive multiple sclerosis: validating and scrutinizing multimodal evoked potentials. Clin Neurophysiol 2022; 137: 152-158
  • 48 Oertel FC, Krämer J, Motamedi S. et al. Visually evoked potential as prognostic biomarker for neuroaxonal damage in multiple sclerosis from a multicenter longitudinal cohort. Neurol Neuroimmunol Neuroinflamm 2023; 10: e200092
  • 49 Shen T, You Y, Arunachalam S. et al. Differing structural and functional patterns of optic nerve damage in multiple sclerosis and neuromyelitis optica spectrum disorder. Ophthalmology 2019; 126: 445-453
  • 50 Jarius S, Ruprecht K, Kleiter I. et al. MOG-IgG in NMO and related disorders: a multicenter study of 50 patients. Part 2: epidemiology, clinical presentation, radiological and laboratory features, treatment responses, and long-term outcome. J Neuroinflammation 2016; 13: 280
  • 51 Vabanesi M, Pisa M, Guerrieri S. et al. In vivo structural and functional assessment of optic nerve damage in neuromyelitis optica spectrum disorders and multiple sclerosis. Sci Rep 2019; 9: 10371
  • 52 Toosy AT, Vidal-Jordana A. Is the optic nerve overdue as a criterion to support the diagnosis of multiple sclerosis?. Neurology 2023; 101: 335-336