Subscribe to RSS
DOI: 10.1055/a-2254-0907
Metal-Free Synthesis of Trifluoromethyl Carbinol-Containing Imidazo[1,2-a]pyridines via Dehydrative Coupling of Imidazo[1,2-a]pyridines with Trifluoroacetaldehyde
This research was supported by the Natural Science Foundation of Jiangxi Province (No. 20224BAB203010), Scientific Research Fund of Jiangxi Provincial Education Department (No. GJJ201504), and Scientific Research Project of Gannan Medical University (No. YB201903).
Abstract
A facile and efficient method for the synthesis of trifluoromethylated carbinols has been developed from imidazo[1,2-a]pyridines and trifluoroacetaldehyde. The direct C(sp2)–H hydroxytrifluoromethylation is successfully implemented at room temperature using HFIP as solvent through dehydrative cross-coupling process, which displays a broad substrate scope and functional group tolerance. Furthermore, gram-scale and synthetic transformation experiments have also been demonstrated, which indicate its potential applicable values in organic synthesis. This green protocol features operational simplicity, atom economy, mild reaction conditions (e.g., at room temperature, transition-metal- and oxidant-free, without inert gas protection), wide substrate scope, and excellent practicality.
Key words
imidazo[1,2-a]pyridines - trifluoromethylated carbinols - dehydrative cross-coupling - HFIP - metal-freeSupporting Information
- Supporting information for this article is available online at https://doi.org/10.1055/a-2254-0907.
- Supporting Information
Publication History
Received: 25 December 2023
Accepted after revision: 25 January 2024
Accepted Manuscript online:
25 January 2024
Article published online:
20 February 2024
© 2024. Thieme. All rights reserved
Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany
-
References
- 1a Müller K, Faeh C, Diederich F. Science 2007; 317: 1881
- 1b Cametti M, Crousse B, Metrangolo P, Milani R, Resnati G. Chem. Soc. Rev. 2012; 41: 31
- 1c O’Hagan D. J. Org. Chem. 2012; 77: 3689
- 2a He TY, Liang CQ, Huang SL. Chem. Sci. 2022; 14: 143
- 2b Pan SY, Song MS, Zuo LL, Geng X, Wang L. J. Org. Chem. 2023; 88: 5586
- 3 Riether D, Harcken C, Razavi H, Kuzmich D, Gilmore T, Bentzien J, Pack EJ, Souza D, Nelson RM, Kukulka A, Fadra TN, Zuvela-Jelaska L, Pelletier J, Dinallo R, Panzenbeck M, Torcellini C, Nabozny GH, Thomson DS. J. Med. Chem. 2010; 53: 6681
- 4 Rabasseda X, Sorbera LA, Castaner J. Drugs Future 1999; 24: 1057
- 5 Vollmer TR, Stockhausen A, Zhang JZ. J. Biol. Chem. 2012; 287: 35212
- 6 Lu S.-H, Yamagata T, Atsuki K, Sun L, Smith CP, Yoshimura N, Chancellor MB, de Groat WC. Brain Res. 2002; 946: 72
- 7a Feng M.-L, Li S.-Q, He H.-Z, Xi L.-Y, Chen S.-Y, Yu X.-Q. Green Chem. 2019; 21: 1619
- 7b Yu Y, Su Z, Cao H. Chem. Rec. 2019; 19: 2105
- 8a Ma CH, Chen M, Feng ZW, Zhang Y, Wang J, Jiang YQ, Yu B. New J. Chem. 2021; 45: 930
- 8b Zhu JY, Chen ZY, He M, Wang DX, Li LS, Qi JC, Shi RY, Lei AW. Org. Chem. Front. 2021; 8: 3815
- 8c Tali JA, Kumar G, Sharma BK, Rasool Y, Sharma Y, Shankar R. Org. Biomol. Chem. 2023; 21: 7267
- 9 Li M, Li G, Dai C, Zhou W, Zhan W, Gao M, Rong Y, Tan Z, Deng W. Org. Biomol. Chem. 2021; 19: 8301
- 10 Monir K, Bagdi AK, Ghosh M, Hajra A. J. Org. Chem. 2015; 80: 1332
- 11 Lefebvre Q, Hoffmann N, Rueping M. Chem. Commun. 2016; 52: 2493
- 12 Ji X-M, Wei L, Chen F, Tang R.-Y. RSC Adv. 2015; 5: 29766
- 13 Zhou QG, Xu S, Zhang RH. Tetrahedron Lett. 2019; 60: 734
- 14 Wu Y, Zhang H, Jin R, Lan Q, Wang X. Adv. Synth. Catal. 2016; 358: 3528
- 15 Han SJ, Gao XY, Wu QS, Li JY, Zou DP, Wu YJ, Wu YS. Adv. Synth. Catal. 2019; 361: 1559
- 16 Nipate DS, Jaspal S, Shinde VN, Rangan K, Kumar A. Org. Lett. 2021; 23: 1373
- 17a Colomer I. ACS Catal. 2020; 10: 6023
- 17b Chaubey N, Kapdi AR. Chem. Commun. 2021; 57: 8202
- 17c Zhang Z, Zhang X, Liu Y, Wang X, Zhang X. J. Org. Chem. 2023; 88: 14189
- 17d Singh S, Mondal S, Vodnala N, Hazra CK. Green Chem. 2023; 25: 1014
- 18a Wu L, Liu X, Liu Z, Chen Z, Fu X, Yang K. Org. Biomol. Chem. 2023; 21: 9236
- 18b Gao J, Liu Z, Guo X, Wu L, Chen Z, Yang K. Molecules 2023; 28: 7522
- 19 CCDC 2295565 (3a) and 2295566 (3b) contain the supplementary crystallographic data for this paper. The data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/structures
- 20 Motiwala HF, Armaly AM, Cacioppo JG, Coombs TC, Koehn KR. K, Norwood VM. IV, Aubé J. Chem. Rev. 2022; 122: 12544
- 21a Yang JG, Gui J, Mu MM, Liu SM, Li JS, Ren J, Wang ZM. J. Org. Chem. 2023; 88: 4790
- 21b Li J, Xi W, Zhong R, Yang J, Wang L, Ding H, Wang Z. Chem. Commun. 2021; 57: 1050
- 21c Yang J, Liu S, Gui J, Xiong D, Li J, Wang Z, Ren J. J. Org. Chem. 2022; 87: 6352
- 21d Li J, Xi W, Liu S, Ruan C, Zheng X, Yang J, Wang L, Wang Z. Org. Lett. 2021; 23: 7264
- 21e Chen Y, Wang Y, Zhong R, Li J. J. Org. Chem. 2020; 85: 10638
- 21f Yang J, Liu S, Hong P, Li J, Wang Z, Ren J. J. Org. Chem. 2022; 87: 1144
- 21g Li J, Xi W, Liu S, Yang Y, Yang J, Ding H, Wang Z. Chin. Chem. Lett. 2022; 33: 3007
- 21h Gao J, Liu Z, Guo X, Wu L, Chen Z, Yang K. Molecules 2023; 28: 7522
- 22a Li G.-X, Qu J. Chem. Commun. 2010; 46: 2653
- 22b Pérez JM, Maquilón C, Ramón DJ, Baeza A. Asian J. Org. Chem. 2017; 6: 1440
- 23a Berkessel A, Adrio JA, Hüttenhain D, Neudörfl JM. J. Am. Chem. Soc. 2006; 128: 8421
- 23b Berkessel A, Adrio JA. J. Am. Chem. Soc. 2006; 128: 13412
- 24 Kour D, Khajuria R, Kapoor KK. Tetrahedron Lett. 2016; 57: 4464
- 25 Ghosh P, Ganguly B, Kar B, Dwivedi S, Das S. Synth. Commun. 2018; 48: 1076