Synlett 2024; 35(16): 1893-1898
DOI: 10.1055/a-2259-3594
letter
Special Section 14th EuCheMS Organic Division Young Investigator Workshop

Spectroscopic Investigation of the Remote C–H Allylation of Amides via Photoredox and Nickel Dual Catalysis

Céline Bourgois
a   Université catholique de Louvain (UCLouvain), Institut de la Matière Condensée et des Nanosciences (IMCN), Molecular Chemistry, Materials and Catalysis (MOST), Place Louis Pasteur 1, bte L4.01.02, 1348 Louvain-la-Neuve, Belgium
,
Simon De Kreijger
a   Université catholique de Louvain (UCLouvain), Institut de la Matière Condensée et des Nanosciences (IMCN), Molecular Chemistry, Materials and Catalysis (MOST), Place Louis Pasteur 1, bte L4.01.02, 1348 Louvain-la-Neuve, Belgium
,
Bin Xu
b   Department of Biochemistry, The University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, Texas 75390-9038, USA
,
Uttam K. Tambar
b   Department of Biochemistry, The University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, Texas 75390-9038, USA
,
a   Université catholique de Louvain (UCLouvain), Institut de la Matière Condensée et des Nanosciences (IMCN), Molecular Chemistry, Materials and Catalysis (MOST), Place Louis Pasteur 1, bte L4.01.02, 1348 Louvain-la-Neuve, Belgium
c   Wel Research Institute, Avenue Pasteur 6, 1300 Wavre, Belgium
› Author Affiliations
L.T.-G. is a Chercheur Qualifié of the Fonds de la Recherche Scientifique - FNRS. C.B., S.D.K. and L.T.-G. gratefully acknowledge the Université catholique de Louvain for financial support. Financial support was provided to U.K.T by a W. W. Caruth, Jr. Endowed Scholarship, Welch Foundation (I-1748), the National Institutes of Health (R01GM102604), and Teva Pharmaceuticals Marc A. Goshko Memorial Grant (60011-TEV).


Abstract

The mechanistic details of a reported allylation reaction are investigated by means of Stern–Volmer experiments and nanosecond transient absorption spectroscopy. Both reference substrates, i.e., an allylic chloride and a trifluoroacetamide, are inefficient quenchers but large quenching rate constants are observed upon the addition of Ni(COD)2 and a bisoxazoline ligand. The large quenching rate constants and absence of observable photoproducts are consistent with a mechanism that operates by energy transfer between the excited-state iridium photosensitizer and the nickel complex.

Supporting Information



Publication History

Received: 15 December 2023

Accepted after revision: 01 February 2024

Accepted Manuscript online:
01 February 2024

Article published online:
23 February 2024

© 2024. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

    • 1a Vitaku E, Smith DT, Njardarson JT. J. Med. Chem. 2014; 57: 10257
    • 1b Hili R, Yudin AK. Nat. Chem. Biol. 2006; 2: 284
    • 1c Henkel T, Brunne RM, Müller H, Reichel F. Angew. Chem. Int. Ed. 1999; 38: 643
  • 3 Xu B, Tambar UK. ACS Catal. 2019; 9: 4627
  • 4 Troian-Gautier L, Turlington MD, Wehlin SA. M, Maurer AB, Brady MD, Swords WB, Meyer GJ. Chem. Rev. 2019; 119: 4628
    • 5a Strieth-Kalthoff F, James MJ, Teders M, Pitzer L, Glorius F. Chem. Soc. Rev. 2018; 47: 7190
    • 5b De Kreijger S, Gillard M, Elias B, Troian-Gautier L. ChemCatChem 2023; 16: e202301100
    • 5c Strieth-Kalthoff F, Glorius F. Chem 2020; 6: 1888
    • 5d Kleinmans R, Pinkert T, Dutta S, Paulisch TO, Keum H, Daniliuc CG, Glorius F. Nature 2022; 605: 477
    • 5e Glaser F, Schmitz M, Kerzig C. Nanoscale 2024; 16: 123
    • 5f Schmid L, Glaser F, Schaer R, Wenger OS. J. Am. Chem. Soc. 2022; 144: 963
    • 6a Tamayo AB, Garon S, Sajoto T, Djurovich PI, Tsyba IM, Bau R, Thompson ME. Inorg. Chem. 2005; 44: 8723
    • 6b Ladouceur S, Fortin D, Zysman-Colman E. Inorg. Chem. 2010; 49: 5625
    • 6c Spaenig F, Olivier J.-H, Prusakova V, Retailleau P, Ziessel R, Castellano FN. Inorg. Chem. 2011; 50: 10859
    • 6d Bevernaegie R, Wehlin SA. M, Elias B, Troian-Gautier L. ChemPhotoChem 2021; 5: 217
    • 6e Bevernaegie R, Marcélis L, Moreno-Betancourt A, Laramée-Milette B, Hanan GS, Loiseau F, Sliwa M, Elias B. Phys. Chem. Chem. Phys. 2018; 20: 27256
    • 7a Arias-Rotondo DM, McCusker JK. Chem. Soc. Rev. 2016; 45: 5803
    • 7b Lakowicz JR. Principles of Fluorescence Spectroscopy . Springer US; New York: 2006
    • 7c Valeur B. Molecular Fluorescence: Principles and Applications. Wiley-VCH; Weinheim: 2001: 72-124
  • 8 Murov SL, Carmichael I, Hug GL. Handbook of Photochemistry, 2nd ed. Marcel Dekker; New York: 1993
  • 9 Morton CM, Zhu Q, Ripberger H, Troian-Gautier L, Toa ZS. D, Knowles RR, Alexanian EJ. J. Am. Chem. Soc. 2019; 141: 13253
    • 10a Cerfontaine S, Wehlin SA. M, Elias B, Troian-Gautier L. J. Am. Chem. Soc. 2020; 142: 5549
    • 10b Aydogan A, Bangle RE, De Kreijger S, Dickenson JC, Singleton ML, Cauët E, Cadranel A, Meyer GJ, Elias B, Sampaio RN, Troian-Gautier L. Catal. Sci. Technol. 2021; 11: 8037
  • 11 Xu B, Troian-Gautier L, Dykstra R, Martin RT, Gutierrez O, Tambar UK. J. Am. Chem. Soc. 2020; 142: 6206
  • 12 DiMarco BN, Troian-Gautier L, Sampaio RN, Meyer GJ. Chem. Sci. 2018; 9: 940
    • 13a Kjær KS, Kaul N, Prakash O, Chábera P, Rosemann NW, Honarfar A, Gordivska O, Fredin LA, Bergquist K.-E, Häggström L, Ericsson T, Lindh L, Yartsev A, Styring S, Huang P, Uhlig J, Bendix J, Strand D, Sundström V, Persson P, Lomoth R, Wärnmark K. Science 2019; 363: 249
    • 13b Aydogan A, Bangle RE, Cadranel A, Turlington MD, Conroy DT, Cauët E, Singleton ML, Meyer GJ, Sampaio RN, Elias B, Troian-Gautier L. J. Am. Chem. Soc. 2021; 143: 15661
    • 13c Bürgin TH, Glaser F, Wenger OS. J. Am. Chem. Soc. 2022; 144: 14181
    • 13d Ripak A, De Kreijger S, Sampaio RN, Vincent CA, Cauët É, Jabin I, Tambar UK, Elias B, Troian-Gautier L. Chem. Catal. 2023; 3: 100490
    • 14a De Kreijger S, Elias B, Troian-Gautier L. Inorg. Chem. 2023; 62: 16196
    • 14b Ripak A, De Kreijger S, Elias B, Troian-Gautier L. STAR Protoc. 2023; 4: 102312
    • 15a Twilton J, Le C, Zhang P, Shaw MH, Evans RW, MacMillan DW. C. Nat. Rev. Chem. 2017; 1: 0052
    • 15b Kim T, McCarver SJ, Lee C, MacMillan DW. C. Angew. Chem. Int. Ed. 2018; 57: 3488
    • 15c Welin ER, Le C, Arias-Rotondo DM, McCusker JK, MacMillan DW. C. Science 2017; 355: 380
    • 15d Heitz DR, Tellis JC, Molander GA. J. Am. Chem. Soc. 2016; 138: 12715
  • 16 Kerzig C, Wenger OS. Chem. Sci. 2019; 10: 11023
    • 17a Wenger OS. Chem. Eur. J. 2021; 27: 2270
    • 17b Ogawa T, Wenger OS. Angew. Chem. Int. Ed. 2023; 62: e202312851
    • 17c Ogawa T, Sinha N, Pfund B, Prescimone A, Wenger OS. J. Am. Chem. Soc. 2022; 144: 21948
    • 18a Shields BJ, Doyle AG. J. Am. Chem. Soc. 2016; 138: 12719
    • 18b Hwang SJ, Powers DC, Maher AG, Anderson BL, Hadt RG, Zheng S.-L, Chen Y.-S, Nocera DG. J. Am. Chem. Soc. 2015; 137: 6472
    • 18c Hwang SJ, Anderson BL, Powers DC, Maher AG, Hadt RG, Nocera DG. Organometallics 2015; 34: 4766
    • 18d Achey D, Meyer GJ. Inorg. Chem. 2013; 52: 9574
    • 18e Kim D, Holten D. Chem. Phys. Lett. 1983; 98: 584
    • 18f Kim D, Kirmaier C, Holten D. Chem. Phys. 1983; 75: 305
    • 18g Glaser F, Aydogan A, Elias B, Troian-Gautier L. Coord. Chem. Rev. 2024; 500: 215522