Subscribe to RSS
Please copy the URL and add it into your RSS Feed Reader.
https://www.thieme-connect.de/rss/thieme/en/10.1055-s-00000084.xml
Synthesis 2024; 56(12): 1873-1880
DOI: 10.1055/a-2260-0282
DOI: 10.1055/a-2260-0282
paper
Product Selectivity Control under Acidic and Basic Conditions on Oxidative Transformation of 1,3-Dicarbonyls Using Sodium Hypochlorite Pentahydrate
This work was supported by JSPS KAKENHI Grant Nos 21A204, 21H05217, and 22K06502 from the Ministry of Education, Culture, Sports, Science, and Technology (MEXT), the Japan Society for the Promotion of Science (JSPS), Core Research for Evolutional Science and Technology (JST CREST, No. JPMJCR20R1), and the Hoansha Foundation.
Abstract
In this study, we reported that the reactivity of 1,3-dicarbonyls with sodium hypochlorite pentahydrate (NaOCl·5H2O) as an easy-to-handle oxidant, alters greatly depending on the pH value. The reaction of NaOCl·5H2O under weakly basic conditions (pH 12) gives the corresponding carboxylic acids in up to 97% yield. Upon addition of AcOH (pH 5), chlorination of active methylene sites proceeds efficiently to afford dichlorinated products in high yields.
Key words
1,3-dicarbonyls - sodium hypochlorite pentahydrate - cleavage - dichlorination - selective oxidationSupporting Information
- Supporting information for this article is available online at https://doi.org/10.1055/a-2260-0282.
- Supporting Information
Publication History
Received: 20 December 2023
Accepted after revision: 02 February 2024
Accepted Manuscript online:
02 February 2024
Article published online:
20 February 2024
© 2024. Thieme. All rights reserved
Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany
-
References
- 1a Podolesov B. J. Org. Chem. 1984; 49: 2644
- 1b Stepovik LP, Gulenova MV, Kalacheva IA, Potkina AY. Russ. J. Gen. Chem. 2011; 81: 550
- 1c Zhang Y, Jiao J, Flowers RA. J. Org. Chem. 2006; 71: 4516
- 2a Ramasubramanian R, Anandababu K, Kumar M, Mayilmurugan R. Dalton Trans. 2018; 47: 4049
- 2b Wang XY, Shang ZP, Zha GF, Chea XQ, Bukhari SN. A, Qin HL. Tetrahedron Lett. 2016; 57: 5628
- 2c Tachikawa Y, Cui L, Matsusaki Y, Tada N, Miura T, Itoh A. Tetrahedron Lett. 2013; 54: 6218
- 2d Tada N, Shomura M, Cui L, Nobuta T, Miura T, Itoh A. Synlett 2011; 2896
- 3a Duan X, Zhou H, Tian X, Liu J, Ma J. Synthesis 2015; 47: 777
- 3b Pu X, Li Q, Lu Z, Yang X. Eur. J. Org. Chem. 2016; 5937
- 3c Giannopoulos V, Katsoulakis N, Smonou L. Synthesis 2022; 54: 2457
- 4a Kirihara M, Okada T, Asawa T, Sugiyama Y, Kimura Y. J. Synth. Org. Chem. Jpn. 2020; 78: 11
- 4b Kirihara M, Okada T, Sugiyama Y, Akiyoshi M, Matsunaga T, Kimura Y. Org. Process Res. Dev. 2017; 21: 1925
- 4c Kirihara M, Osugi R, Saito K, Adachi K, Yamazaki K, Matsushima R, Kimura Y. J. Org. Chem. 2019; 84: 8330
- 4d Hakuto N, Saito K, Kirihara M, Kotsuchibashi Y. Polym. Chem. 2020; 11: 2469
- 4e Kirihara M, Suzuki K, Nakakura K, Saito K, Nakamura R, Tujimoto K, Sakamoto Y, Kikkawa Y, Shimazu H, Kimura Y. J. Fluorine Chem. 2021; 243: 109719
- 4f Kirihara M, Adachi K, Sakamoto Y, Tujimoto K, Yamahara S, Matsushima R, Namba Y, Sato K, Kamada T, Kimura Y, Takizawa S. Heterocycles 2021; 103: 699
- 4g Kirihara M, Yamahara S, Okada T, Matsumuro H, Kinoshit Y, Kitajima A, Takamura Y, Odagiri T, Asawa T, Sugiyama Y, Kimura Y. Synthesis 2022; 54: 4120
- 5a Miller SA, Bisset KA, Leadbeater NE, Eddya NA. Eur. J. Org. Chem. 2019; 1413
- 5b Porcheddu A, Delogu F, De Luca LD, Fattuoni C, Colacino E. Beilstein J. Org. Chem. 2019; 15: 1786
- 5c Uyanik M, Nishioka K, Kondo R, Ishihara K. Nat. Chem. 2020; 12: 353
- 5d Zhu Y, Wang J, Wu D, Yu W. Asian J. Org. Chem. 2020; 9: 1650
- 5e Matsuki S, Kayano H, Takada J, Kono H, Fujisawa S, Saito T, Isogai A. ACS Sustainable Chem. Eng. 2020; 8: 17800
- 5f Umeda T, Minakata S. RSC Adv. 2021; 11: 22120
- 5g Miyamoto K, Okada T, Toyama T, Imamura S, Uchiyama M. Heterocycles 2021; 103: 694
- 5h Miyamoto K, Watanabe Y, Takagi T, Okada T, Toyama T, Imamura S, Uchiyama M. ARKIVOC 2021; (vii): 1
- 5i Kõllo M, Kasari M, Kasari V, Pehk T, Järving I, Lopp M, Jõers A, Kanger T. Beilstein J. Org. Chem. 2021; 17: 581
- 6 The cleavage reaction proceeded even with conventional 13% NaOCl (5.0 eq.) aqueous solution (pH 14), but it took a longer time to complete the reaction (2a, 90% yield). In contrast, the reaction with NaOCl·5H2O (3.5 eq.) and H2SO4 (6.5 eq.) aqueous solution (pH 3) gave the monochlorinated product, 2-chloro-1,3-diphenylpropane-1,3-dione (60% yield), together with 2a (5% yield) and 3a (32% yield), respectively. Under acidic conditions (<pH 3, NaOCl exists as HOCl + Cl2), the oxidizing ability of NaOCl decreases due to the generation of chlorine gas, resulting in lower yields of target molecules 2a and 3a.
- 7 Commercially available NaOCl·5H2O crystals are 44% NaOCl and contain minimal amounts of NaOH and NaCl, and the aqueous solution, which is prepared from NaOCl·5H2O and water, has a pH of 11–12, also see ref 4b.
- 8 Santilli C, Makarov IS, Fristrup P, Madsen R. J. Org. Chem. 2016; 81: 9931
- 9 Salem MS. H, Dubois C, Takamura Y, Kitajima A, Kawai T, Takizawa S, Kirihara M. Green. Chem. 2024; 26: 375
- 10 Das S, Rani ER, Mahanti MK. Kinet. Catal. 2007; 48: 381
- 11 Pícha J, Vanĕk V, Budĕšínský M, Mládková J, Garrow TA, Jiráček J. Eur. J. Med. Chem. 2013; 65: 256
- 12 Yu H, Ru S, Zhai Y, Dai G, Han S, Wei Y. ChemCatChem 2018; 10: 1253
- 13 Lv S.-S, Yan X.-P, Li C.-K, Zhou S.-F, Shoberu A, Zou J.-P. ChemistrySelect 2020; 5: 5670
- 14 Giannopoulos V, Katsoulakis N, Smonou I. Synthesis 2022; 54: 2457
- 15 Xi Z, Liu Y, Wang H, Guan D, Liu Y, Sun B, Tian H, Liang S. ChemistrySelect 2021; 6: 10883
Our synthetic reactions using NaOCl·5H2O, see:
Selected recent synthetic reactions using NaOCl·5H2O, see: