Neuroradiologie Scan 2024; 14(04): 299-324
DOI: 10.1055/a-2260-4843
CME-Fortbildung

Bildgebung der Hirnvenen bei Kindern: jenseits der duralen Sinusvenenthrombose

Asha Sarma
,
Dann Martin
,
Sumit Pruthi
,
Richard Jones
,
Stephen B. Little

Die Sinusthrombose ist eine häufige Erkrankung, die in der Literatur bereits ausgiebig diskutiert wurde. Jedoch gibt es weitere zerebrale Venenerkrankungen bei Kindern, zu denen deutlich weniger publiziert wurde. Dieser Beitrag liefert eine Übersicht über die relevante Embryologie und Anatomie sowie geeignete bildgebende Verfahren. Anschließend werden angeborene, entwicklungsbedingte und erworbene kindliche zerebrale Venenpathologien besprochen.

Kernaussagen
  • Im Vergleich zur arteriellen Entwicklung ist die intrakranielle Venenentwicklung ein relativ passiver Prozess, der von hämodynamischen und Zirkulationsfaktoren beeinflusst wird. Diese werden u.a. in Abhängigkeit von der lokalen Sauerstoffkonzentration aktiviert. Die Venenanatomie ist daher von Individuum zu Individuum sehr unterschiedlich.

  • Die oberflächlichen kortikalen Venen, die die äußere Grenzmembran der Arachnoidea und die durale Grenzzellschicht auf ihrem Weg zu den duralen Sinus durchdringen, werden als Brückenvenen bezeichnet. Die Verletzung der relativ festen Brückenvenensegmente bei einem unfallbedingten oder misshandlungsbedingten Kopftrauma führt häufig zur Bildung eines Subduralhämatoms.

  • Die MRT ist die am häufigsten eingesetzte Methode zur Darstellung kindlicher intrakranieller Venenanomalien. Zu den oft verwendeten MRT-Sequenzen gehören T1w, T2w, T2w FLAIR- und T2*w oder suszeptibilitätsgewichtete Sequenzen sowie in ausgewählten Fällen kontrastverstärkte T1w 3-D-Gradienten-Echo-Sequenzen.

  • Die Auswahl der Technik für die MR-Venografie kann auf der Grundlage der verfügbaren Sequenzen, der Dauer der gewünschten Untersuchung, des Verdachts auf eine Anomalie und der klinischen Bedeutung der Bildgebung bestimmter Gruppen von oberflächlichen Hirnvenenstrukturen (z.B. Sinus sagittalis superior bei Verdacht auf Thrombose oder parasagittale Brückenvenen bei durch Misshandlung verursachtem Kopftrauma) angepasst werden.

  • Zu den neueren Techniken, die eine Verbesserung der Hirnvenenbildgebung bei Kindern versprechen, gehören die Dual-Energy-CT, die 4-D-Fluss-MRT und Anwendungen der künstlichen Intelligenz wie die synthetische MRT.



Publication History

Article published online:
01 October 2024

© 2024. Thieme. All rights reserved.

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • Literatur

  • 1 Hedlund GL. Cerebral sinovenous thrombosis in pediatric practice. Pediatr Radiol 2013; 43: 173-188
  • 2 Wagner MW, Bosemani T, Oshmyansky A. et al. Neuroimaging findings in pediatric cerebral sinovenous thrombosis. Childs Nerv Syst 2015; 31: 705-712
  • 3 Raybaud C. Normal and abnormal embryology and development of the intracranial vascular system. Neurosurg Clin N Am 2010; 21: 399-426
  • 4 Pearl M, Gregg L, Gandhi D. Cerebral venous development in relation to developmental venous anomalies and vein of Galen aneurysmal malformations. Semin Ultrasound CT MR 2011; 32: 252-263
  • 5 Taoka T, Fukusumi A, Miyasaka T. et al. Structure of the medullary veins of the cerebral hemisphere and related disorders. RadioGraphics 2017; 37: 281-297
  • 6 Okudera T, Huang YP, Fukusumi A. et al. Micro-angiographical studies of the medullary venous system of the cerebral hemisphere. Neuropathology 1999; 19: 93-111
  • 7 Bell R, Severson 3rd MA, Armonda RA. Neurovascular anatomy: a practical guide. Neurosurg Clin N Am 2009; 20: 265-278
  • 8 Rhoton Jr AL. The cerebral veins. Neurosurgery 2002; 51: S159-S205
  • 9 Miabi Z, Midia R, Rohrer SE. et al. Delineation of lateral tentorial sinus with contrast-enhanced MR imaging and its surgical implications. AJNR Am J Neuroradiol 2004; 25: 1181-1188
  • 10 Mack J, Squier W, Eastman JT. Anatomy and development of the meninges: implications for subdural collections and CSF circulation. Pediatr Radiol 2009; 39: 200-210
  • 11 Yamashima T, Friede RL. Why do bridging veins rupture into the virtual subdural space?. J Neurol Neurosurg Psychiatry 1984; 47: 121-127
  • 12 Adamsbaum C, Rambaud C. Abusive head trauma: Don’t overlook bridging vein thrombosis. Pediatr Radiol 2012; 42: 1298-1300
  • 13 Mankad K, Biswas A, Espagnet MCR. et al. Venous pathologies in paediatric neuroradiology: from foetal to adolescent life. Neuroradiology 2020; 62 (1): 15–37 [published correction appears in Neuroradiology 2020; 62: 903]
  • 14 Bracken J, Barnacle A, Ditchfield M. Potential pitfalls in imaging of paediatric cerebral sinovenous thrombosis. Pediatr Radiol 2013; 43: 219-231
  • 15 Dmytriw AA, Song JSA, Yu E. et al. Cerebral venous thrombosis: state of the art diagnosis and management. Neuroradiology 2018; 60: 669-685
  • 16 Haller S, Haacke EM, Thurnher MM. et al. Susceptibility-weighted imaging: technical essentials and clinical neurologic applications. Radiology 2021; 299: 3-26
  • 17 Bambach S, Smith M, Morris PP. et al. Arterial spin labeling applications in pediatric and adult neurologic disorders. J Magn Reson Imaging 2022; 55: 698-719
  • 18 van Dam LF, van Walderveen MAA, Kroft LJM. et al. Current imaging modalities for diagnosing cerebral vein thrombosis: a critical review. Thromb Res 2020; 189: 132-139
  • 19 Fleecs JB, Artz NS, Mitchell GS. et al. Non-contrast magnetic resonance angiography/venography techniques: What are my options?. Pediatr Radiol 2022; 52: 271-284
  • 20 Meckel S, Reisinger C, Bremerich J. et al. Cerebral venous thrombosis: diagnostic accuracy of combined, dynamic and static, contrast-enhanced 4D MR venography. AJNR Am J Neuroradiol 2010; 31: 527-535
  • 21 Paoletti M, Germani G, De Icco R. et al. Intra- and extracranial MR venography: technical notes, clinical application, and imaging development. Behav Neurol 2016; 2016: 2694504
  • 22 Ayanzen RH, Bird CR, Keller PJ. et al. Cerebral MR venography: normal anatomy and potential diagnostic pitfalls. AJNR Am J Neuroradiol 2000; 21: 74-78
  • 23 Rollins N, Ison C, Reyes T. et al. Cerebral MR venography in children: comparison of 2D time-of-flight and gadolinium-enhanced 3D gradient-echo techniques. Radiology 2005; 235: 1011-1017
  • 24 Ji S, Yang D, Lee J. et al. Synthetic MRI: technologies and applications in neuroradiology. J Magn Reson Imaging 2022; 55: 1013-1025
  • 25 Fujita S, Hagiwara A, Otsuka Y. et al. Deep learning approach for generating MRA images from 3D quantitative synthetic MRI without additional scans. Invest Radiol 2020; 55: 249-256
  • 26 Morioka T, Hashiguchi K, Samura K. et al. Detailed anatomy of intracranial venous anomalies associated with atretic parietal cephaloceles revealed by high-resolution 3D-CISS and high-field T2-weighted reversed MR images. Childs Nerv Syst 2009; 25: 309-315
  • 27 Khodarahmi I, Alizai H, Chalian M. et al. Imaging spectrum of calvarial abnormalities. RadioGraphics 2021; 41: 1144-1163
  • 28 Sencer S, Arnaout MM, Al-Jehani H. et al. The spectrum of venous anomalies associated with atretic parietal cephaloceles: a literature review. Surg Neurol Int 2021; 12: 326
  • 29 Demir MK, Çolak A, Ekşi M. et al. Atretic cephaloceles: a comprehensive analysis of historical cohort. Childs Nerv Syst 2016; 32: 2327-2337
  • 30 Alvarez H, Garcia Monaco R, Rodesch G. et al. Vein of galen aneurysmal malformations. Neuroimaging Clin N Am 2007; 17: 189-206
  • 31 Bhattacharya JJ, Thammaroj J. Vein of galen malformations. J Neurol Neurosurg Psychiatry 2003; 74 (Suppl. 01) i42-i44
  • 32 De Ciantis A, Barkovich AJ, Cosottini M. et al. Ultra-high-field MR imaging in polymicrogyria and epilepsy. AJNR Am J Neuroradiol 2015; 36: 309-316
  • 33 Cress M, Kestle JRW, Holubkov R. et al. Risk factors for pediatric arachnoid cyst rupture/hemorrhage: a case-control study. Neurosurgery 2013; 72: 716-722
  • 34 Hoell T, Hohaus C, Beier A. et al. Cortical venous aneurysm isolated cerebral varix. Interv Neuroradiol 2004; 10: 161-165
  • 35 Gomez DF, Mejia JA, Murcia DJ. et al. Isolated giant cerebral varix: a diagnostic and therapeutic challenge – a case report. Surg Neurol Int 2016; 7 (Suppl. 05) S156-S159
  • 36 Naik S, Bhoi SK. Association of venous varix and developmental venous anomaly: report of a case and review of literature. BMJ Case Rep 2019; 12: e228067
  • 37 Zuniega RRA, Santos JA, Galsim RJG. et al. Neonatal giant dural sinus ectasia: a multimodality imaging approach. BMJ Case Rep 2021; 14: e242439
  • 38 Rinaldo L, Lanzino G, Flemming KD. et al. Symptomatic developmental venous anomalies. Acta Neurochir (Wien) 2020; 162: 1115-1125
  • 39 Shiran SI, Ben-Sira L, Elhasid R. et al. Multiple brain developmental venous anomalies as a marker for constitutional mismatch repair deficiency syndrome. AJNR Am J Neuroradiol 2018; 39: 1943
  • 40 Cavallo C, Faragò G, Broggi M. et al. Developmental venous anomaly as a rare cause of obstructive hydrocephalus. J Neurosurg Sci 2019; 63: 600-606
  • 41 Zhang M, Telischak NA, Fischbein NJ. et al. Clinical and arterial spin labeling brain MRI features of transitional venous anomalies. J Neuroimaging 2018; 28: 289-300
  • 42 Im SH, Han MH, Kwon BJ. et al. Venous-predominant parenchymal arteriovenous malformation: a rare subtype with a venous drainage pattern mimicking developmental venous anomaly. J Neurosurg 2008; 108: 1142-1147
  • 43 Manjila S, Bazil T, Thomas M. et al. A review of extraaxial developmental venous anomalies of the brain involving dural venous flow or sinuses: persistent embryonic sinuses, sinus pericranii, venous varices or aneurysmal malformations, and enlarged emissary veins. Neurosurg Focus 2018; 45: E9
  • 44 Rich PM, Cox TCS, Hayward RD. The jugular foramen in complex and syndromic craniosynostosis and its relationship to raised intracranial pressure. AJNR Am J Neuroradiol 2003; 24: 45-51
  • 45 Brinjikji W, Nicholson P, Hilditch CA. et al. Cerebrofacial venous metameric syndrome: spectrum of imaging findings. Neuroradiology 2020; 62: 417-425
  • 46 Shirley MD, Tang H, Gallione CJ. et al. Sturge-Weber syndrome and port-wine stains caused by somatic mutation in GNAQ. N Engl J Med 2013; 368: 1971-1979
  • 47 Juhász C, Haacke EM, Hu J. et al. Multimodality imaging of cortical and white matter abnormalities in Sturge-Weber syndrome. AJNR Am J Neuroradiol 2007; 28: 900-906
  • 48 Moritani T, Kim J, Sato Y. et al. Abnormal hypermyelination in a neonate with Sturge-Weber syndrome demonstrated on diffusion-tensor imaging. J Magn Reson Imaging 2008; 27: 617-620
  • 49 Griffiths PD, Coley SC, Romanowski CAJ. et al. Contrast-enhanced fluid-attenuated inversion recovery imaging for leptomeningeal disease in children. AJNR Am J Neuroradiol 2003; 24: 719-723
  • 50 Kuharik MA, Edwards MK. Cerebral venous distention associated with cardiac failure in infants. AJNR Am J Neuroradiol 1987; 8: 657-659
  • 51 Buyck PJ, De Keyzer F, Vanneste D. et al. CT density measurement and H:H ratio are useful in diagnosing acute cerebral venous sinus thrombosis. AJNR Am J Neuroradiol 2013; 34: 1568-1572
  • 52 Khalatbari H, Wright JN, Ishak GE. et al. Deep medullary vein engorgement and superficial medullary vein engorgement: two patterns of perinatal venous stroke. Pediatr Radiol 2021; 51: 675-685
  • 53 Inder TE, Perlman JM, Volpe JJ. Preterm intraventricular hemorrhage/posthemorrhagic hydrocephalus. In: Volpe JJ. Volpe’s Neurology of the newborn. 6th ed. Philadelphia, Pa: Elsevier; 2017: 637.e21-698.e21
  • 54 Cizmeci MN, de Vries LS, Ly LG. et al. Periventricular hemorrhagic infarction in very preterm infants: characteristic sonographic findings and association with neurodevelopmental outcome at age 2 years. J Pediatr 2020; 217: 79.e1-85.e1
  • 55 Ichord R. Cerebral sinovenous thrombosis. Front Pediatr 2017; 5: 163
  • 56 Ritchey Z, Hollatz AL, Weitzenkamp D. et al. Pediatric cortical vein thrombosis: frequency and association with venous infarction. Stroke 2016; 47: 866-868
  • 57 Gold M. Isolated right vein of Labbe thrombosis. JAMA Neurol 2016; 73: 120-121
  • 58 Mageid R, Ding Y, Fu P. Vein of Labbe thrombosis, a near-miss. Brain Circ 2018; 4: 188-190
  • 59 Smith DM, Vossough A, Vorona GA. et al. Pediatric cavernous sinus thrombosis: a case series and review of the literature. Neurology 2015; 85: 763-769
  • 60 Dwyer CM, Prelog K, Owler BK. The role of venous sinus outflow obstruction in pediatric idiopathic intracranial hypertension. J Neurosurg Pediatr 2013; 11: 144-149
  • 61 Gilbert AL, Vaughn J, Whitecross S. et al. Magnetic resonance imaging features and clinical findings in pediatric idiopathic intracranial hypertension: a case-control study. Life (Basel) 2021; 11: 487
  • 62 Barreto ARF, Carrasco M, Dabrowski AK. et al. Subpial hemorrhage in neonates: what radiologists need to know. AJR Am J Roentgenol 2021; 216: 1056-1065
  • 63 Dabrowski AK, Carrasco M, Gatti JR. et al. Neonatal subpial hemorrhage: clinical factors, neuroimaging, and outcomes in a quaternary care children’s center. Pediatr Neurol 2021; 120: 52-58
  • 64 Vilanilam GK, Jayappa S, Desai S. et al. Venous injury in pediatric abusive head trauma: a pictorial review. Pediatr Radiol 2021; 51: 918-926
  • 65 Rambaud C. Bridging veins and autopsy findings in abusive head trauma. Pediatr Radiol 2015; 45: 1126-1131
  • 66 Hahnemann ML, Kinner S, Schweiger B. et al. Imaging of bridging vein thrombosis in infants with abusive head trauma: the “tadpole sign”. Eur Radiol 2015; 25: 299-305
  • 67 Zuccoli G, Khan AS, Panigrahy A. et al. In vivo demonstration of traumatic rupture of the bridging veins in abusive head trauma. Pediatr Neurol 2017; 72: 31-35
  • 68 Choudhary AK, Bradford R, Dias MS. et al. Venous injury in abusive head trauma. Pediatr Radiol 2015; 45: 1803-1813
  • 69 Leach JL, Fortuna RB, Jones BV. et al. Imaging of cerebral venous thrombosis: current techniques, spectrum of findings, and diagnostic pitfalls. RadioGraphics 2006; 26 (Suppl. 01) S19-S43