Subscribe to RSS
DOI: 10.1055/a-2260-9842
Prothetische Versorgungskonzepte nach Majoramputation der oberen Extremität – eine Übersicht gegenwärtiger Möglichkeiten
Prosthetic Fitting Concepts after Major Amputation in the Upper Limb – an Overview of Current PossibilitiesZusammenfassung
Hintergrund Die obere Extremität und insbesondere die Hand sind für die Interaktion des Menschen mit seiner Umwelt von entscheidender Bedeutung – schwere Verletzungen oder Amputationen gehen daher mit einem erheblichen Funktionsverlust einher und beeinträchtigen die Lebensqualität der Patienten sehr. Wenn biologische Rekonstruktionsversuche nicht zu einem ausreichenden Erfolg führen oder nicht möglich sind, kommt der bionischen Rekonstruktion eine Schlüsselrolle in der Versorgung dieser Patienten zu. Konventionelle myoelektrische Prothesen werden über zwei Signale gesteuert, die über Oberflächenelektroden im Bereich der Stumpfmuskulatur abgeleitet werden. Insbesondere bei hohen Amputationen ist die Prothesensteuerung dann nur sehr eingeschränkt und umständlich möglich. Die Operationsmethode der Targeted Muscle Reinnervation (TMR) bietet hier einen innovativen Lösungsansatz: Die großen Armnerven, die durch Amputation ihre Zielorgane verloren haben, werden auf neue Zielmuskeln im Bereich des Amputationsstumpfes transferiert. Dadurch können kognitive Steuersignale etabliert werden, welche eine deutlich verbesserte Prothesensteuerung ermöglichen.
Patienten/Material und Methoden Es erfolgte eine selektive Literaturrecherche zum Thema TMR und bionische Rekonstruktion mit Aufarbeitung und Diskussion relevanter Arbeiten, unter Berücksichtigung der klinischen Erfahrungen unserer Forschungsgruppe. Zusätzlich wird ein klinischer Patientenfall vorgestellt.
Ergebnisse Die bionische Rekonstruktion in Kombination mit TMR ermöglicht eine intuitive Prothesensteuerung mit simultaner Bewegung verschiedener prothetischer Freiheitsgrade und bietet zudem einen neuen Ansatz in der Therapie von Neurom- und Phantomschmerzen. Langfristiger Erfolg erfordert ein hohes Maß an Patientencompliance und intensives Signaltraining während der prothetischen Rehabilitationsphase. Trotz technologischer Fortschritte bestehen weiterhin Herausforderungen, insbesondere hinsichtlich der Signalüberleitung und der sensiblen Integration bionischer Prothesen.
Schlussfolgerung Die Operationstechnik der TMR stellt einen bedeutenden Fortschritt der prothetischen Versorgung von Amputierten dar. Durch selektive Nerventransfers zur Signalmultiplikation und -amplifikation ermöglicht sie, das Potential myoelektrischer Prothesen weiter auszuschöpfen und die Therapie dieser speziellen Patientengruppe zu verbessern. Entwicklungen im Bereich der externen Prothesenkomponenten, Verbesserungen der skelettalen Anbindung durch Osseointegration und flüssigere Signalübertragung durch drahtlose, vollständig implantierte Elektrodensysteme werden sowohl hinsichtlich der Bewegungspräzision, als auch des Embodiments deutliche Fortschritte in der bionischen Rekonstruktion ermöglichen.
Abstract
Background The upper extremity and particularly the hands are crucial for patients in interacting with their environment, therefore amputations or severe damage with loss of hand function significantly impact their quality of life. In cases where biological reconstruction is not feasible or does not lead to sufficient success, bionic reconstruction plays a key role in patient care. Classical myoelectric prostheses are controlled using two signals derived from surface electrodes in the area of the stump muscles. Prosthesis control, especially in high amputations, is then limited and cumbersome. The surgical technique of Targeted Muscle Reinnervation (TMR) offers an innovative solution: The major arm nerves that have lost their target organs due to amputation are rerouted to muscles in the stump area. This enables the establishment of cognitive control signals that allow significantly improved prosthesis control.
Patients/Materials and Methods A selective literature review on TMR and bionic reconstruction was conducted, incorporating relevant articles and discussing them considering the clinical experience of our research group. Additionally, a clinical case is presented.
Results Bionic reconstruction combined with Targeted Muscle Reinnervation enables intuitive prosthetic control with simultaneous movement of various prosthetic degrees of freedom and the treatment of neuroma and phantom limb pain. Long-term success requires a high level of patient compliance and intensive signal training during the prosthetic rehabilitation phase. Despite technological advances, challenges persist, especially in enhancing signal transmission and integrating natural sensory feedback into bionic prostheses.
Conclusion TMR surgery represents a significant advancement in the bionic care of amputees. Employing selective nerve transfers for signal multiplication and amplification, opens up possibilities for improving myoelectric prosthesis function and thus enhancing patient care. Advances in the area of external prosthetic components, improvements in the skeletal connection due to osseointegration and more fluid signal transmission using wireless, fully implanted electrode systems will lead to significant progress in bionic reconstruction, both in terms of precision of movement and embodiment.
Publication History
Received: 29 November 2023
Accepted: 31 January 2024
Article published online:
28 February 2024
© 2024. The Author(s). This is an open access article published by Thieme under the terms of the Creative Commons Attribution-NonDerivative-NonCommercial-License, permitting copying and reproduction so long as the original work is given appropriate credit. Contents may not be used for commercial purposes, or adapted, remixed, transformed or built upon. (https://creativecommons.org/licenses/by-nc-nd/4.0/).
Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany
-
Literatur
- 1 Belon HP, Vigoda DF. Emotional adaptation to limb loss. Phys Med Rehabil Clin N Am 2014; 25: 53-74
- 2 Oleske DM, Hahn JJ. Work-related injuries of the hand: data from an occupational injury/illness surveillance system. J Community Health 1992; 17: 205-219
- 3 von Schroeder HP, Botte MJ. Crush syndrome of the upper extremity. Hand Clin 1998; 14: 451-456
- 4 Naidu SH, Heppenstall RB. Compartment syndrome of the forearm and hand. Hand Clin 1994; 10: 13-27
- 5 Aszmann OC, Roche AD, Salminger S. et al. Bionic reconstruction to restore hand function after brachial plexus injury: a case series of three patients. Lancet 2015; 385: 2183-2189
- 6 Aszmann OC, Dietl H, Frey M. Selektive Nerventransfers zur verbesserten Steuerung myoelektrischer Armprothesen. Handchir Mikrochir Plast Chir 2008; 40: 60-65
- 7 Roche AD, Rehbaum H, Farina D. et al. Prosthetic Myoelectric Control Strategies: A Clinical Perspective. Current Surgery Reports 2014; 2: 44
- 8 Ostlie K, Lesjo IM, Franklin RJ. et al. Prosthesis use in adult acquired major upper-limb amputees: patterns of wear, prosthetic skills and the actual use of prostheses in activities of daily life. Disabil Rehabil Assist Technol 2012; 7: 479-493
- 9 Salminger S, Stino H, Pichler LH. et al. Current rates of prosthetic usage in upper-limb amputees – have innovations had an impact on device acceptance?. Disabil Rehabil 2022; 44: 3708-3713
- 10 Salminger S, Sturma A, Roche AD. et al. Outcomes, Challenges, and Pitfalls after Targeted Muscle Reinnervation in High-Level Amputees: Is It Worth the Effort?. Plast Reconstr Surg 2019; 144: 1037e-1043e
- 11 Farina D, Aszmann O. Bionic limbs: clinical reality and academic promises. Sci Transl Med 2014; 6: 257ps212
- 12 Biddiss EA, Chau TT. Upper limb prosthesis use and abandonment: a survey of the last 25 years. Prosthet Orthot Int 2007; 31: 236-257
- 13 Hruby LA, Sturma A, Mayer JA. et al. Algorithm for bionic hand reconstruction in patients with global brachial plexopathies. J Neurosurg 2017; 127: 1163-1171
- 14 Hruby LA, Pittermann A, Sturma A. et al. The Vienna psychosocial assessment procedure for bionic reconstruction in patients with global brachial plexus injuries. PLoS One 2018; 13: e0189592
- 15 Hruby LA, Gstoettner C, Sturma A. et al. Bionic Upper Limb Reconstruction: A Valuable Alternative in Global Brachial Plexus Avulsion Injuries-A Case Series. J Clin Med 2020; 9(1): 23
- 16 Salminger S, Roche AD, Sturma A. et al. Improving arm function by prosthetic limb replacement in a patient with severe arthrogryposis multiplex congenita. J Rehabil Med 2016; 48: 725-728
- 17 Kuiken TA, Dumanian GA, Lipschutz RD. et al. The use of targeted muscle reinnervation for improved myoelectric prosthesis control in a bilateral shoulder disarticulation amputee. Prosthet Orthot Int 2004; 28: 245-253
- 18 Salminger S, Sturma A, Herceg M. et al. Prothetische Rekonstruktion hoher Amputationen der oberen Extremität. Orthopade 2015; 44: 413-418
- 19 Frey M, Giovanoli P, Tzou CH. et al. Dynamic reconstruction of eye closure by muscle transposition or functional muscle transplantation in facial palsy. Plast Reconstr Surg 2004; 114: 865-875
- 20 Kuiken TA, Lowery MM, Stoykov NS. The effect of subcutaneous fat on myoelectric signal amplitude and cross-talk. Prosthet Orthot Int 2003; 27: 48-54
- 21 Sturma A, Stamm T, Hruby LA. et al. Rehabilitation of high upper limb amputees after Targeted Muscle Reinnervation. J Hand Ther 2022; 35: 58-66
- 22 Kuiken TA, Miller LA, Turner K. et al. A Comparison of Pattern Recognition Control and Direct Control of a Multiple Degree-of-Freedom Transradial Prosthesis. IEEE J Transl Eng Health Med 2016; 4: 2100508
- 23 Simon AM, Turner KL, Miller LA. et al. Myoelectric prosthesis hand grasp control following targeted muscle reinnervation in individuals with transradial amputation. PLoS One 2023; 18: e0280210
- 24 Souza JM, Cheesborough JE, Ko JH. et al. Targeted muscle reinnervation: a novel approach to postamputation neuroma pain. Clin Orthop Relat Res 2014; 472: 2984-2990
- 25 Dumanian GA, Potter BK, Mioton LM. et al. Targeted Muscle Reinnervation Treats Neuroma and Phantom Pain in Major Limb Amputees: A Randomized Clinical Trial. Ann Surg 2019; 270: 238-246
- 26 Pierrie SN, Gaston RG, Loeffler BJ. Targeted Muscle Reinnervation for Prosthesis Optimization and Neuroma Management in the Setting of Transradial Amputation. J Hand Surg Am 2019; 44: 525 e521-525 e528
- 27 Aszmann OC, Moser V, Frey M. Die Behandlung chronisch schmerzhafter Neurome mittels End-zu-Seit Neurorraphie. Handchir Mikrochir Plast Chir 2010; 42: 225-232
- 28 Kyberd PJ, Hill W. Survey of upper limb prosthesis users in Sweden, the United Kingdom and Canada. Prosthet Orthot Int 2011; 35: 234-241
- 29 Errico M, Metcalfe NH, Platt A. History and ethics of hand transplants. JRSM Short Rep 2012; 3: 74
- 30 Lucio MJ, Horta R. Hand Transplantation-Risks and Benefits. J Hand Microsurg 2021; 13: 207-215
- 31 Salminger S, Roche AD, Sturma A. et al. Hand Transplantation Versus Hand Prosthetics: Pros and Cons. Curr Surg Rep 2016; 4: 8
- 32 Pollard MS. Hand transplantation--risks of immunosuppression. J Hand Surg Br 2001; 26: 517
- 33 Shores JT, Brandacher G, Lee WPA. Hand and upper extremity transplantation: an update of outcomes in the worldwide experience. Plast Reconstr Surg 2015; 135: 351e-360e
- 34 Mayer A, Kudar K, Bretz K. et al. Body schema and body awareness of amputees. Prosthet Orthot Int 2008; 32: 363-382
- 35 Aszmann OC, Vujaklija I, Roche AD. et al. Elective amputation and bionic substitution restore functional hand use after critical soft tissue injuries. Sci Rep 2016; 6: 34960
- 36 Raspopovic S, Capogrosso M, Petrini FM. et al. Restoring natural sensory feedback in real-time bidirectional hand prostheses. Sci Transl Med 2014; 6: 222ra219
- 37 Tan DW, Schiefer MA, Keith MW. et al. A neural interface provides long-term stable natural touch perception. Sci Transl Med 2014; 6: 257ra138
- 38 Sturma A, Roche AD, Gobel P. et al. A surface EMG test tool to measure proportional prosthetic control. Biomed Tech (Berl) 2015; 60: 207-213
- 39 Schultz AE, Baade SP, Kuiken TA. Expert opinions on success factors for upper-limb prostheses. J Rehabil Res Dev 2007; 44: 483-489
- 40 Branemark R, Branemark PI, Rydevik B. et al. Osseointegration in skeletal reconstruction and rehabilitation: a review. J Rehabil Res Dev 2001; 38: 175-181
- 41 Gstoettner C, Festin C, Prahm C. et al. Feasibility of a Wireless Implantable Multi-electrode System for High-bandwidth Prosthetic Interfacing: Animal and Cadaver Study. Clin Orthop Relat Res 2022; 480: 1191-1204
- 42 Pasquina PF, Evangelista M, Carvalho AJ. et al. First-in-man demonstration of a fully implanted myoelectric sensors system to control an advanced electromechanical prosthetic hand. J Neurosci Methods 2015; 244: 85-93
- 43 Salminger S, Sturma A, Hofer C. et al. Long-term implant of intramuscular sensors and nerve transfers for wireless control of robotic arms in above-elbow amputees. Sci Robot 2019 Jul 17 4(32)