Subscribe to RSS
Please copy the URL and add it into your RSS Feed Reader.
https://www.thieme-connect.de/rss/thieme/en/10.1055-s-00000084.xml
Synthesis 2024; 56(11): 1793-1798
DOI: 10.1055/a-2261-3255
DOI: 10.1055/a-2261-3255
paper
Visible-Light-Driven Oxidative Chlorination of Alkyl sp3 C–H Bonds with HCl/Air at Room Temperature
Abstract
An aerobic chlorination of alkyl sp3 C–H bonds of functionalized alkanes and simple alkanes has been established successfully under visible light at room temperature. The reaction is performed in the presence of catalytic NaNO2 using HCl or NaCl/acid as a chlorine source and air as a terminal oxidant under atmospheric pressure. It is suggested that NOCl from NaNO2/HCl is a crucial species in the catalytic cycle involving an aerobic oxidation and a photochemical radical chlorination.
Supporting Information
- Supporting information for this article is available online at https://doi.org/10.1055/a-2261-3255.
- Supporting Information
Publication History
Received: 16 December 2023
Accepted after revision: 05 February 2024
Accepted Manuscript online:
05 February 2024
Article published online:
26 February 2024
© 2024. Thieme. All rights reserved
Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany
-
References
- 1a Lin R, Amrute AP, Perezramirez J. Chem. Rev. 2017; 117: 4182
- 1b Kozlowski MC. Acc. Chem. Res. 2017; 50: 638
- 1c Oxidation of C‒H Bonds . Lu W, Zhou L. John Wiley & Sons; Hoboken: 2017
- 2 Manabe Y, Kitawaki Y, Nagasaki M, Fukase K, Matsubara H, Hino Y, Fukuyama T, Ryu I. Chem. Eur. J. 2014; 20: 12750
- 3 Zhao M, Lu W. Org. Lett. 2017; 19: 4560
- 4a Egloff G, Schaad RE, Lowry CD. Chem. Rev. 1931; 8: 1
- 4b Schmidt VA, Quinn RK, Brusoe AT, Alexanian EJ. J. Am. Chem. Soc. 2014; 136: 14389
- 5a Kennedy RJ, Stock AM. J. Org. Chem. 1960; 25: 1901
- 5b Hill CL, Smegal JA, Henly TJ. J. Org. Chem. 1983; 48: 3277
- 5c Takahiko K, Hidenobu M, Yoshihisa M. Chem. Lett. 1998; 27: 1085
- 5d Reis PM, Armando J, Silva L, da Silva JJ. R. F, Pombeiro AJ. L. Chem. Commun. 2000; 1845
- 5e Li Y, Ju J, Jia J, Sheng W, Han L, Gao J. Chin. J. Chem. 2010; 28: 2428
- 5f He Y, Goldsmith CR. Synlett 2010; 1377
- 6 Zhao M, Lu W. Org. Lett. 2018; 20: 5264
- 7 Dean JA. Lange’s Handbook of Chemistry, 15th ed. McGraw-Hill; New York: 1999
- 8a Mei C, Hu Y, Lu W. Synthesis 2018; 50: 2999
- 8b Xu L, Mei C, Zhao M, Lu W. ChemRxiv 2023; preprint
- 9a Lynn EV. J. Am. Chem. Soc. 1919; 41: 368
- 9b Lynn EV, Hilton O. J. Am. Chem. Soc. 1922; 44: 645
- 9c Busch GE, Wilson KR. J. Chem. Phys. 1972; 56: 3655
- 9d Lebl R, Cantillo D, Kappe CO. React. Chem. Eng. 2019; 4: 738
- 9e Leifert D, Studer A. Angew. Chem. Int. Ed. 2020; 59: 74
- 10a Pass G, Sutcliffe H. Practical Inorganic Chemistry: Preparation, Reactions and Instrumental Methods. Chapman Hall; London: 1968
- 10b Williams DL. H. In Nitrosation Reactions and the Chemistry of Nitric Oxide . Elsevier Science; Amsterdam: 2004
- 11 Barham BP, Reid PJ. Chem. Phys. Lett. 2002; 361: 49
- 12a Radner F. J. Org. Chem. 1988; 53: 3548
- 12b Iskra J, Stavber S, Zupan M. Tetrahedron Lett. 2008; 49: 893
- 12c Ren Y.-L, Shang H, Wang J, Tian X, Zhao S, Wang Q, Li F. Adv. Synth. Catal. 2013; 355: 3437
- 13 Schrader AM, Schroll AL, Barany G. J. Org. Chem. 2011; 76: 7882
- 14 Sopeña S, Cozzolino M, Maquilón C, Escudero-Adán EC, Martínez Belmonte M, Kleij AW. Angew. Chem. Int. Ed. 2018; 57: 11203