Subscribe to RSS
DOI: 10.1055/a-2262-8411
Bone Reporting and Data System (Bone-RADS) and Other Proposed Practice Guidelines for Reporting Bone Tumors
Bone Reporting and Data System (Bone-RADS) und andere vorgeschlagene Praxisleitlinien für die Meldung von KnochentumorenAbstract
Background The purpose of this article is to review the different bone tumor radiology reporting systems [Bone Reporting and Data System (Bone-RADS), Osseous Tumor Reporting and Data System (OT-RADS), Solitary Bone Tumor Imaging Reporting and Data System (BTI-RADS), and Radiological Evaluation Score for Bone Tumors (REST)] and summarize their advantages and disadvantages.
Methods A selective search of PubMed was performed for literature regarding the definition and discussion of bone tumor reporting systems. No time frame was selected, but the search was particularly focused on current literature on musculoskeletal radiology lexicon.
Results To date, four major reporting systems has been proposed to standardize and systematize the reporting of imaging studies of bone tumors: Bone-RADS, OT-RADS, BTI-RADS, and REST. Both Bone-RADS and OT-RADS aid in the characterization and management of bone lesions on CT and MRI. OT-RADS and REST can be applied to MRI and radiography, respectively.
Conclusion Radiologists play a central role in the detection and characterization of asymptomatic (or incidentally detected) and symptomatic bone tumors. There are several existing bone tumor reporting systems with various advantages and disadvantages including emphasis on lesion characterization as well as management of incidentally detected bone lesions.
Key Points
-
Four bone tumor reporting systems have been proposed thus far.
-
Bone-RADS guides management of incidental bone lesions on CT and MRI.
-
OT-RADS guides management of bone lesions on MRI with high accuracy.
-
BTI-RADS classifies bone tumors on CT and MRI.
Citation Format
-
Ghasemi A, Ahlawat S, . Bone Reporting and Data System (Bone-RADS) and Other Proposed Practice Guidelines for Reporting Bone Tumors. Fortschr Röntgenstr 2024; 196: 1134 – 1142
Zusammenfassung
Hintergrund Der Zweck dieses Artikels ist es, die verschiedenen Befundungssysteme für Knochentumorradiologie [Bone Reporting and Data System (Bone-RADS), Osseous Tumor Reporting and Data System (OT-RADS), Solitary Bone Tumor Imaging Reporting and Data System (BTI-RADS) und Radiological Evaluation Score for Bone Tumors (REST)] zu überprüfen und ihre Vor- und Nachteile zusammenzufassen.
Methode PubMed wurde selektiv nach Literatur zur Definition und Diskussion von Knochentumormeldesystemen durchsucht. Es wurde kein Zeitrahmen gewählt, aber die Suche konzentrierte sich insbesondere auf die aktuelle Literatur zum muskuloskelettalen Radiologielexikon.
Ergebnisse und Schlussfolgerung Bisher wurden vier große Berichtssysteme vorgeschlagen, um die Berichterstattung über bildgebende Untersuchungen von Knochentumoren zu standardisieren und zu systematisieren: Bone Reporting and Data System (Bone-RADS), Osseous Tumor Reporting and Data System (OT-RADS), Solitary Bone Tumor Imaging Reporting and Data System (BTI-RADS) und Radiological Evaluation Score for Bone Tumors (REST). Sowohl Bone-RADS als auch OT-RADS helfen bei der Charakterisierung und Behandlung von Knochenläsionen im CT und MRT. OT-RADS und REST können auf MRT bzw. Röntgen angewendet werden.
Schlussfolgerung Radiologen spielen eine zentrale Rolle bei der Erkennung und Charakterisierung von asymptomatischen (oder zufällig entdeckten) und symptomatischen Knochentumoren. Es gibt mehrere bestehende Systeme zur Befundung von Knochentumoren mit verschiedenen Vor- und Nachteilen, einschließlich des Schwerpunkts auf der Charakterisierung von Läsionen sowie der Behandlung von zufällig entdeckten Knochenläsionen.
Keywords
bone tumors - CT - MRI - bone-RADS - OT-RADS - BTI-RADS - REST - bones - skeletal-appendicular - skeletal-axialPublication History
Received: 17 October 2023
Accepted after revision: 30 January 2024
Article published online:
15 March 2024
© 2024. Thieme. All rights reserved.
Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany
-
References
- 1 Franchi A. Epidemiology and classification of bone tumors. Clin Cases Miner Bone Metab 2012; 9 (02) 92-95
- 2 Ahlawat S, Fayad LM. Revisiting the WHO classification system of bone tumours: Emphasis on advanced magnetic resonance imaging sequences. part 2. Polish journal of radiology 2020; 85 (01) 409-419 DOI: 10.5114/pjr.2020.98686.
- 3 Hauben EI, Hogendoorn PCW. Chapter 1 – epidemiology of primary bone tumors and economical aspects of bone metastases. In: Heymann D. ed. Bone cancer (second edition). San Diego: Academic Press; 2015: 5-10 DOI: 10.1016/B978-0-12-416721-6.00001-7 https://www.sciencedirect.com/science/article/pii/B9780124167216000017
- 4 Stiller CA, Trama A, Serraino D. et al. Descriptive epidemiology of sarcomas in europe: Report from the RARECARE project. European journal of cancer 2013; 49 (03) 684-695 DOI: 10.1016/j.ejca.2012.09.011.
- 5 Chang CY, Garner HW, Ahlawat S. et al. Society of skeletal radiology- white paper. guidelines for the diagnostic management of incidental solitary bone lesions on CT and MRI in adults: Bone reporting and data system (bone-RADS). Skeletal Radiol 2022; 51 (09) 1743-1764 DOI: 10.1007/s00256-022-04022-8.
- 6 Chhabra A, Gupta A, Thakur U. et al. Osseous tumor reporting and data System—Multireader validation study. J Comput Assist Tomogr 2021; 45 (04) DOI: 10.1097/RCT.0000000000001184. https://journals.lww.com/jcat/Fulltext/2021/07000/Osseous_Tumor_Reporting_and_Data.12.aspx
- 7 Ribeiro GJ, Gillet R, Hossu G. et al. Solitary bone tumor imaging reporting and data system (BTI-RADS): Initial assessment of a systematic imaging evaluation and comprehensive reporting method. Eur Radiol 2021; 31 (10) 7637-7652 DOI: 10.1007/s00330-021-07745-9.
- 8 Salunke AA, Nandy K, Puj K. et al. A proposed “Radiological evaluation score for bone tumors” (REST): An objective system for assessment of a radiograph in patients with suspected bone tumor. MUSCULOSKELETAL SURGERY 2022; 106 (04) 371-382 DOI: 10.1007/s12306-021-00711-0.
- 9 Alawi M, Begum A, Harraz M. et al. Dual-energy X-ray absorptiometry (DEXA) scan versus computed tomography for bone density assessment. Cureus 2021; 13 (02) e13261 DOI: 10.7759/cureus.13261.
- 10 Guirguis M, Gupta A, Thakur U. et al. Osseous-tissue tumor reporting and data system with diffusion-weighted imaging of bone tumors-an interreader analysis and whether it adds incremental value on tumor grading over conventional magnetic resonance imaging. J Comput Assist Tomogr 2023; 47 (02) 255-263 DOI: 10.1097/RCT.0000000000001415.
- 11 Gitto S, Cuocolo R, Albano D. et al. MRI radiomics-based machine-learning classification of bone chondrosarcoma. Eur J Radiol 2020; 128: 109043 DOI: 10.1016/j.ejrad.2020.109043.
- 12 Gitto S, Cuocolo R, Emili I. et al. Effects of interobserver variability on 2D and 3D CT- and MRI-based texture feature reproducibility of cartilaginous bone tumors. J Digital Imaging 2021; 34 (04) 820-832 DOI: 10.1007/s10278-021-00498-3.
- 13 Cilengir AH, Evrimler S, Serel TA. et al. The diagnostic value of magnetic resonance imaging-based texture analysis in differentiating enchondroma and chondrosarcoma. Skeletal Radiol 2023; 52 (05) 1039-1049 DOI: 10.1007/s00256-022-04242-y.
- 14 Pan J, Zhang K, Le H. et al. Radiomics nomograms based on non-enhanced MRI and clinical risk factors for the differentiation of chondrosarcoma from enchondroma. J Magn Reson Imaging 2021; 54 (04) 1314-1323 DOI: 10.1002/jmri.27690.
- 15 Fritz B, Müller DA, Sutter R. et al. Magnetic resonance imaging-based grading of cartilaginous bone tumors: Added value of quantitative texture analysis. Invest Radiol 2018; 53 (11) 663-672 DOI: 10.1097/RLI.0000000000000486.