Hamostaseologie
DOI: 10.1055/a-2263-5706
Review Article

Bleeding Disorder of Unknown Cause: A Diagnosis of Exclusion

Dino Mehic
1   Clinical Division of Haematology and Haemostaseology, Department of Medicine I, Medical University of Vienna, Vienna, Austria
,
Johanna Gebhart
1   Clinical Division of Haematology and Haemostaseology, Department of Medicine I, Medical University of Vienna, Vienna, Austria
,
Ingrid Pabinger
1   Clinical Division of Haematology and Haemostaseology, Department of Medicine I, Medical University of Vienna, Vienna, Austria
› Institutsangaben
Funding The Vienna Bleeding Biobank is supported by an unrestricted grant of CSL Behring, the Medical-Scientific Fund of the Mayor of the Federal Capital Vienna (grant number 20023), and the Anniversary Fund of the Austrian National Bank (grant number 18500).

Abstract

Patients with an unexplained mild to moderate bleeding tendency are diagnosed with bleeding disorder of unknown cause (BDUC), a classification reached after ruling out other mild to moderate bleeding disorders (MBD) including von Willebrand disease (VWD), platelet function defects (PFDs), coagulation factor deficiencies (CFDs), and non-hemostatic causes for bleeding. This review outlines our diagnostic approach to BDUC, a diagnosis of exclusion, drawing on current guidelines and insights from the Vienna Bleeding Biobank (VIBB). According to guidelines, we diagnose VWD based on VWF antigen and/or activity levels ≤50 IU/dL, with repeated VWF testing if VWF levels are <80 IU/dL. This has been introduced in our clinical routine after our findings of diagnostically relevant fluctuations of VWF levels in a high proportion of MBD patients. PFDs are identified through repeated abnormalities in light transmission aggregometry (LTA), flow cytometric mepacrine fluorescence, and glycoprotein expression analysis. Nevertheless, we experience diagnostic challenges with regard to reproducibility and unspecific alterations of LTA. For factor (F) VIII and FIX deficiency, a cutoff of 50% is utilized to ensure detection of mild hemophilia A or B. We apply established cutoffs for other rare CFD being aware that these do not clearly reflect the causal role of the bleeding tendency. Investigations into very rare bleeding disorders due to hyperfibrinolysis or increase in natural anticoagulants are limited to cases with a notable family history or distinct bleeding phenotypes considering cost-effectiveness. While the pathogenesis of BDUC remains unknown, further explorations of this intriguing area may reveal new mechanisms and therapeutic targets.

Authors' Contribution

D.M., J.G., and I.P. performed a literature review, wrote and revised the manuscript.




Publikationsverlauf

Eingereicht: 20. November 2023

Angenommen: 07. Februar 2024

Artikel online veröffentlicht:
27. Februar 2024

© 2024. Thieme. All rights reserved.

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

  • 1 Rodeghiero F, Pabinger I, Ragni M. et al. Fundamentals for a systematic approach to mild and moderate inherited bleeding disorders: an EHA consensus report. HemaSphere 2019; 3 (04) e286-e286
  • 2 Mezzano D, Quiroga T. Diagnostic challenges of inherited mild bleeding disorders: a bait for poorly explored clinical and basic research. J Thromb Haemost 2019; 17 (02) 257-270
  • 3 Rodeghiero F, Tosetto A, Abshire T. et al; ISTH/SSC Joint VWF and Perinatal/Pediatric Hemostasis Subcommittees Working Group. ISTH/SSC bleeding assessment tool: a standardized questionnaire and a proposal for a new bleeding score for inherited bleeding disorders. J Thromb Haemost 2010; 8 (09) 2063-2065
  • 4 Rodeghiero F, Castaman G, Tosetto A. et al. The discriminant power of bleeding history for the diagnosis of type 1 von Willebrand disease: an international, multicenter study. J Thromb Haemost 2005; 3 (12) 2619-2626
  • 5 Gebhart J, Hofer S, Panzer S. et al. High proportion of patients with bleeding of unknown cause in persons with a mild-to-moderate bleeding tendency: results from the Vienna Bleeding Biobank (VIBB). Haemophilia 2018; 24 (03) 405-413
  • 6 Baker RI, O'Donnell JS. How I treat bleeding disorder of unknown cause. Blood 2021; 138 (19) 1795-1804
  • 7 Gebhart J, Hofer S, Kaider A, Rejtö J, Ay C, Pabinger I. The discriminatory power of bleeding assessment tools in adult patients with a mild to moderate bleeding tendency. Eur J Intern Med 2020; 78: 34-40
  • 8 Mehic D, Pabinger I, Gebhart J. Investigating patients for bleeding disorders when most of the “usual” ones have been ruled out. Res Pract Thromb Haemost 2023; 7 (08) 102242
  • 9 Hofer S, Ay C, Rejtö J. et al. Thrombin-generating potential, plasma clot formation, and clot lysis are impaired in patients with bleeding of unknown cause. J Thromb Haemost 2019; 17 (09) 1478-1488
  • 10 Veen CSB, Huisman EJ, Cnossen MH. et al. Evaluation of thromboelastometry, thrombin generation and plasma clot lysis time in patients with bleeding of unknown cause: a prospective cohort study. Haemophilia 2020; 26 (03) e106-e115
  • 11 Thomas W, White D, MacDonald S. Thrombin generation measured by two platforms in patients with a bleeding tendency: comment. J Thromb Haemost 2021; 19 (11) 2896-2899
  • 12 Mehic D, Neubauer G, Janig F. et al. Risk factors for future bleeding in patients with mild bleeding disorders: longitudinal data from the Vienna Bleeding Biobank. J Thromb Haemost 2023; 21 (07) 1757-1768
  • 13 Veen CSB, Huisman EJ, Romano LGR. et al. Outcome of surgical interventions and deliveries in patients with bleeding of unknown cause: an observational study. Thromb Haemost 2021; 121 (11) 1409-1416
  • 14 Castle D, Desborough MJR, Kemp M, Lowe G, Thomas W, Obaji S. Outcomes and management of pregnancy in women with bleeding disorder of unknown cause. J Thromb Haemost 2022; 20 (11) 2519-2525
  • 15 Mehic D, Schwarz S, Shulym I, Ay C, Pabinger I, Gebhart J. Health-related quality of life is impaired in bleeding disorders of unknown cause: results from the Vienna Bleeding Biobank. Res Pract Thromb Haemost 2023; 7 (06) 102176
  • 16 Thomas W, Downes K, Evans G. et al. Current practice and registration patterns among United Kingdom Haemophilia Centre Doctors' Organisation centers for patients with unclassified bleeding disorders. J Thromb Haemost 2021; 19 (11) 2738-2743
  • 17 Thomas W. The natural history of bleeding disorder of unknown cause. J Thromb Haemost 2023; 21 (07) 1747-1749
  • 18 Mehic D, Hofer S, Jungbauer C. et al. Association of ABO blood group with bleeding severity in patients with bleeding of unknown cause. Blood Adv 2020; 4 (20) 5157-5164
  • 19 Mehic D, Pabinger I, Ay C, Gebhart J. Fibrinolysis and bleeding of unknown cause. Res Pract Thromb Haemost 2021; 5 (04) e12511
  • 20 Mehic D, Colling M, Pabinger I, Gebhart J. Natural anticoagulants: a missing link in mild to moderate bleeding tendencies. Haemophilia 2021; 27 (05) 701-709
  • 21 James PD, Connell NT, Ameer B. et al. ASH ISTH NHF WFH 2021 guidelines on the diagnosis of von Willebrand disease. Blood Adv 2021; 5 (01) 280-300
  • 22 Flood VH, Gill JC, Morateck PA. et al. Common VWF exon 28 polymorphisms in African Americans affecting the VWF activity assay by ristocetin cofactor. Blood 2010; 116 (02) 280-286
  • 23 Fogarty H, Doherty D, O'Donnell JS. New developments in von Willebrand disease. Br J Haematol 2020; 191 (03) 329-339
  • 24 Boender J, Eikenboom J, van der Bom JG. et al; WiN Study Group. Clinically relevant differences between assays for von Willebrand factor activity. J Thromb Haemost 2018; 16 (12) 2413-2424
  • 25 Costa-Pinto J, Pérez-Rodríguez A, del C Goméz-del-Castillo M. et al. Diagnosis of inherited von Willebrand disease: comparison of two methodologies and analysis of the discrepancies. Haemophilia 2014; 20 (04) 559-567
  • 26 Sagheer S, Rodgers S, Yacoub O, Dauer R, Mcrae S, Duncan E. Comparison of von Willebrand factor (VWF) activity levels determined by HemosIL AcuStar assay and HemosIL LIA assay with ristocetin cofactor assay by aggregometry. Haemophilia 2016; 22 (03) e200-e207
  • 27 Vangenechten I, Mayger K, Smejkal P. et al. A comparative analysis of different automated von Willebrand factor glycoprotein Ib-binding activity assays in well typed von Willebrand disease patients. J Thromb Haemost 2018; 16 (07) 1268-1277
  • 28 Flood VH, Friedman KD, Gill JC. et al. No increase in bleeding identified in type 1 VWD subjects with D1472H sequence variation. Blood 2013; 121 (18) 3742-3744
  • 29 Abou-Ismail MY, James PD, Flood VH, Connell NT. Beyond the guidelines: how we approach challenging scenarios in the diagnosis and management of von Willebrand disease. J Thromb Haemost 2023; 21 (02) 204-214
  • 30 Mari D, Coppola R, Provenzano R. Hemostasis factors and aging. Exp Gerontol 2008; 43 (02) 66-73
  • 31 Sanders YV, Giezenaar MA, Laros-van Gorkom BA. et al; WiN Study Group. von Willebrand disease and aging: an evolving phenotype. J Thromb Haemost 2014; 12 (07) 1066-1075
  • 32 Atiq F, Meijer K, Eikenboom J. et al; WiN Study Group. Comorbidities associated with higher von Willebrand factor (VWF) levels may explain the age-related increase of VWF in von Willebrand disease. Br J Haematol 2018; 182 (01) 93-105
  • 33 Gill JC, Endres-Brooks J, Bauer PJ, Marks Jr WJ, Montgomery RR. The effect of ABO blood group on the diagnosis of von Willebrand disease. Blood 1987; 69 (06) 1691-1695
  • 34 Flood VH, Christopherson PA, Gill JC. et al. Clinical and laboratory variability in a cohort of patients diagnosed with type 1 VWD in the United States. Blood 2016; 127 (20) 2481-2488
  • 35 de Maat MPM, van Schie M, Kluft C, Leebeek FWG, Meijer P. Biological variation of hemostasis variables in thrombosis and bleeding: consequences for performance specifications. Clin Chem 2016; 62 (12) 1639-1646
  • 36 Preston FE, Lippi G, Favaloro EJ, Jayandharan GR, Edison ES, Srivastava A. Quality issues in laboratory haemostasis. Haemophilia 2010; 16 (Suppl. 05) 93-99
  • 37 Mehic D, Kraemmer D, Tolios A. et al. The necessity of repeat testing for von Willebrand disease in adult patients with mild to moderate bleeding disorders. J Thromb Haemost 2024; 22 (01) 101-111
  • 38 Doshi BS, Rogers RS, Whitworth HB. et al. Utility of repeat testing in the evaluation for von Willebrand disease in pediatric patients. J Thromb Haemost 2019; 17 (11) 1838-1847
  • 39 Brown MC, White MH, Friedberg R. et al. Elevated von Willebrand factor levels during heavy menstrual bleeding episodes limit the diagnostic utility for von Willebrand disease. Res Pract Thromb Haemost 2021; 5 (04) e12513
  • 40 Soleimani R, Khourssaji M, Cabo J. et al. Letter in response to Othman & Favaloro “Comparison of two ways of performing ristocetin-induced platelet agglutination (RIPA) mixing study for diagnosis of type 2B VWD”. Res Pract Thromb Haemost 2023; 7 (06) 102165
  • 41 Favaloro EJ, Othman M. Comparison of 2 ways of performing ristocetin-induced platelet agglutination mixing study for diagnosis of type 2B von Willebrand disease. Response to the publication of Soleimani et al. Res Pract Thromb Haemost 2023; 7 (05) 100286
  • 42 Othman M, Favaloro EJ. 2B von Willebrand disease diagnosis: considerations reflecting on 2021 multisociety guidelines. Res Pract Thromb Haemost 2021; 5 (08) e12635
  • 43 Downes K, Megy K, Duarte D. et al; NIHR BioResource. Diagnostic high-throughput sequencing of 2396 patients with bleeding, thrombotic, and platelet disorders. Blood 2019; 134 (23) 2082-2091
  • 44 Gresele P, Bury L, Falcinelli E. Inherited platelet function disorders: algorithms for phenotypic and genetic investigation. Semin Thromb Hemost 2016; 42 (03) 292-305
  • 45 Podda G, Femia EA, Cattaneo M. Current and emerging approaches for evaluating platelet disorders. Int J Lab Hematol 2016; 38 (Suppl. 01) 50-58
  • 46 Gresele P. Subcommittee on Platelet Physiology of the International Society on Thrombosis and Hemostasis. Diagnosis of inherited platelet function disorders: guidance from the SSC of the ISTH. J Thromb Haemost 2015; 13 (02) 314-322
  • 47 Gebetsberger J, Mott K, Bernar A, Klopocki E, Streif W, Schulze H. State-of-the-art targeted high-throughput sequencing for detecting inherited platelet disorders. Hamostaseologie 2023; 43 (04) 244-251
  • 48 Balduini C, Freson K, Greinacher A. et al. The EHA research roadmap: platelet disorders. HemaSphere 2021; 5 (07) e601
  • 49 Baccolo A, Falcinelli E, Mezzasoma AM. et al. Usefulness of global tests of primary hemostasis in the initial screening of mild/moderate bleeding disorders for orienting towards von Willebrand disease or inherited platelet functions disorders. Thromb Res 2023; 221: 79-82
  • 50 Sims MC, Mayer L, Collins JH. et al; NIHR BioResource. Novel manifestations of immune dysregulation and granule defects in gray platelet syndrome. Blood 2020; 136 (17) 1956-1967
  • 51 Cattaneo M, Cerletti C, Harrison P. et al. Recommendations for the standardization of light transmission aggregometry: a consensus of the working party from the platelet physiology subcommittee of SSC/ISTH. J Thromb Haemost 2013; 11 (06) 1183-1189
  • 52 Gunay-Aygun M, Zivony-Elboum Y, Gumruk F. et al. Gray platelet syndrome: natural history of a large patient cohort and locus assignment to chromosome 3p. Blood 2010; 116 (23) 4990-5001
  • 53 Brunet JG, Iyer JK, Badin MS. et al. Electron microscopy examination of platelet whole mount preparations to quantitate platelet dense granule numbers: Implications for diagnosing suspected platelet function disorders due to dense granule deficiency. Int J Lab Hematol 2018; 40 (04) 400-407
  • 54 Chen D, Uhl CB, Bryant SC. et al. Diagnostic laboratory standardization and validation of platelet transmission electron microscopy. Platelets 2018; 29 (06) 574-582
  • 55 Gordon N, Thom J, Cole C, Baker R. Rapid detection of hereditary and acquired platelet storage pool deficiency by flow cytometry. Br J Haematol 1995; 89 (01) 117-123
  • 56 Wall JE, Buijs-Wilts M, Arnold JT. et al. A flow cytometric assay using mepacrine for study of uptake and release of platelet dense granule contents. Br J Haematol 1995; 89 (02) 380-385
  • 57 van Asten I, Blaauwgeers M, Granneman L. et al. Flow cytometric mepacrine fluorescence can be used for the exclusion of platelet dense granule deficiency. J Thromb Haemost 2020; 18 (03) 706-713
  • 58 Bastida JM, Benito R, Lozano ML. et al. Molecular diagnosis of inherited coagulation and bleeding disorders. Semin Thromb Hemost 2019; 45 (07) 695-707
  • 59 Megy K, Downes K, Morel-Kopp MC. et al. GoldVariants, a resource for sharing rare genetic variants detected in bleeding, thrombotic, and platelet disorders: communication from the ISTH SSC Subcommittee on Genomics in Thrombosis and Hemostasis. J Thromb Haemost 2021; 19 (10) 2612-2617
  • 60 Downes K, Borry P, Ericson K. et al; Subcommittee on Genomics in Thrombosis, Hemostasis. Clinical management, ethics and informed consent related to multi-gene panel-based high throughput sequencing testing for platelet disorders: communication from the SSC of the ISTH. J Thromb Haemost 2020; 18 (10) 2751-2758
  • 61 Hayward CP, Harrison P, Cattaneo M, Ortel TL, Rao AK. Platelet Physiology Subcommittee of the Scientific and Standardization Committee of the International Society on Thrombosis and Haemostasis. Platelet function analyzer (PFA)-100 closure time in the evaluation of platelet disorders and platelet function. J Thromb Haemost 2006; 4 (02) 312-319
  • 62 Mezzano D, Quiroga T, Pereira J. The level of laboratory testing required for diagnosis or exclusion of a platelet function disorder using platelet aggregation and secretion assays. Semin Thromb Hemost 2009; 35 (02) 242-254
  • 63 Sladky JL, Klima J, Grooms L, Kerlin BA, O'Brien SH. The PFA-100 ® does not predict delta-granule platelet storage pool deficiencies. Haemophilia 2012; 18 (04) 626-629
  • 64 Podda GM, Bucciarelli P, Lussana F, Lecchi A, Cattaneo M. Usefulness of PFA-100 testing in the diagnostic screening of patients with suspected abnormalities of hemostasis: comparison with the bleeding time. J Thromb Haemost 2007; 5 (12) 2393-2398
  • 65 Kaufmann J, Adler M, Alberio L, Nagler M. Utility of the platelet function analyzer in patients with suspected platelet function disorders: diagnostic accuracy study. TH Open 2020; 4 (04) e427-e436
  • 66 Mehic D, Rast JS, Fuchs M. et al. Utility of the platelet function analyzer (PFA-100) in patients with bleeding disorder of unknown cause. Blood 2023; 142 (Suppl. 01) 3965-3965
  • 67 Alessi MC, Coxon C, Ibrahim-Kosta M. et al. Multicenter evaluation of light transmission platelet aggregation reagents: communication from the ISTH SSC Subcommittee on Platelet Physiology. J Thromb Haemost 2023; 21 (09) 2596-2610
  • 68 Segot A, Adler M, Aliotta A. et al. Low COAT platelets are frequent in patients with bleeding disorders of unknown cause (BDUC) and can be enhanced by DDAVP. J Thromb Haemost 2022; 20 (05) 1271-1274
  • 69 Bargehr C, Knöfler R, Streif W. Treatment of inherited platelet disorders: current status and future options. Hamostaseologie 2023; 43 (04) 261-270
  • 70 Rejtő J, Reitter-Pfoertner S, Kepa S. et al. Epidemiology and treatment of patients with haemophilia in Austria - update from the Austrian Haemophilia Registry. Hamostaseologie 2019; 39 (03) 284-293
  • 71 Rejtő J, Königsbrügge O, Grilz E. et al. Influence of blood group, von Willebrand factor levels, and age on factor VIII levels in non-severe haemophilia A. J Thromb Haemost 2020; 18 (05) 1081-1086
  • 72 Peyvandi F, Di Michele D, Bolton-Maggs PH, Lee CA, Tripodi A, Srivastava A. Project on Consensus Definitions in Rare Bleeding Disorders of the Factor VIII/Factor IX Scientific and Standardisation Committee of the International Society on Thrombosis and Haemostasis. Classification of rare bleeding disorders (RBDs) based on the association between coagulant factor activity and clinical bleeding severity. J Thromb Haemost 2012; 10 (09) 1938-1943
  • 73 Palla R, Peyvandi F, Shapiro AD. Rare bleeding disorders: diagnosis and treatment. Blood 2015; 125 (13) 2052-2061
  • 74 Gomez K, Bolton-Maggs P. Factor XI deficiency. Haemophilia 2008; 14 (06) 1183-1189
  • 75 Reitsma SE, Holle LA, Bouck EG. et al. Tissue factor pathway inhibitor is a potential modifier of bleeding risk in factor XI deficiency. J Thromb Haemost 2023; 21 (03) 467-479
  • 76 Yi BA, Freedholm D, Widener N. et al. Pharmacokinetics and pharmacodynamics of abelacimab (MAA868), a novel dual inhibitor of factor XI and factor XIa. J Thromb Haemost 2022; 20 (02) 307-315
  • 77 Dargaud Y, Scoazec JY, Wielders SJH. et al. Characterization of an autosomal dominant bleeding disorder caused by a thrombomodulin mutation. Blood 2015; 125 (09) 1497-1501
  • 78 Langdown J, Luddington RJ, Huntington JA, Baglin TP. A hereditary bleeding disorder resulting from a premature stop codon in thrombomodulin (p.Cys537Stop). Blood 2014; 124 (12) 1951-1956
  • 79 Westbury SK, Whyte CS, Stephens J. et al; NIHR BioResource. A new pedigree with thrombomodulin-associated coagulopathy in which delayed fibrinolysis is partially attenuated by co-inherited TAFI deficiency. J Thromb Haemost 2020; 18 (09) 2209-2214
  • 80 Mehic D, Tolios A, Hofer S. et al. Thrombomodulin in patients with mild to moderate bleeding tendency. Haemophilia 2021; 27 (06) 1028-1036
  • 81 Vincent LM, Tran S, Livaja R, Bensend TA, Milewicz DM, Dahlbäck B. Coagulation factor V(A2440G) causes east Texas bleeding disorder via TFPIα. J Clin Invest 2013; 123 (09) 3777-3787
  • 82 Cunha MLR, Bakhtiari K, Peter J, Marquart JA, Meijers JCM, Middeldorp S. A novel mutation in the F5 gene (factor V Amsterdam) associated with bleeding independent of factor V procoagulant function. Blood 2015; 125 (11) 1822-1825
  • 83 Zimowski KL, Ho MD, Shields JE. et al. Factor V Atlanta: a novel mutation in the F5 gene reveals potential new Cis-acting elements involved in regulating FV-short and TFPI Levels. Blood 2017; 130 (Suppl. 01) 366-366
  • 84 Dahlbäck B. Novel insights into the regulation of coagulation by factor V isoforms, tissue factor pathway inhibitorα, and protein S. J Thromb Haemost 2017; 15 (07) 1241-1250
  • 85 Dahlbäck B. Pro- and anticoagulant properties of factor V in pathogenesis of thrombosis and bleeding disorders. Int J Lab Hematol 2016; 38 (1, Suppl 1) 4-11
  • 86 Mehic D, Tolios A, Hofer S. et al. Elevated levels of tissue factor pathway inhibitor in patients with mild to moderate bleeding tendency. Blood Adv 2021; 5 (02) 391-398
  • 87 Scott CF, Carrell RW, Glaser CB, Kueppers F, Lewis JH, Colman RW. Alpha-1-antitrypsin-Pittsburgh. A potent inhibitor of human plasma factor XIa, kallikrein, and factor XIIf. J Clin Invest 1986; 77 (02) 631-634
  • 88 Owen MC, Brennan SO, Lewis JH, Carrell RW. Mutation of antitrypsin to antithrombin. Alpha 1-antitrypsin Pittsburgh (358 Met leads to Arg), a fatal bleeding disorder. N Engl J Med 1983; 309 (12) 694-698
  • 89 Schulman S, El-Darzi E, Florido MHC. et al; NIHR BioResource. A coagulation defect arising from heterozygous premature termination of tissue factor. J Clin Invest 2020; 130 (10) 5302-5312
  • 90 Saes JL, Schols SEM, van Heerde WL, Nijziel MR. Hemorrhagic disorders of fibrinolysis: a clinical review. J Thromb Haemost 2018; 16 (08) 1498-1509
  • 91 Gebhart J, Kepa S, Hofer S. et al. Fibrinolysis in patients with a mild-to-moderate bleeding tendency of unknown cause. Ann Hematol 2017; 96 (03) 489-495
  • 92 Valke LLFG, Meijer D, Nieuwenhuizen L. et al. Fibrinolytic assays in bleeding of unknown cause: improvement in diagnostic yield. Res Pract Thromb Haemost 2022; 6 (02) e12681
  • 93 Bareille M, Hardy M, Chatelain B, Lecompte T, Mullier F. Laboratory evaluation of a new integrative assay to phenotype plasma fibrinolytic system. Thromb J 2022; 20 (01) 73
  • 94 Amiral J, Laroche M, Seghatchian J. A new assay for global fibrinolysis capacity (GFC): investigating a critical system regulating hemostasis and thrombosis and other extravascular functions. Transfus Apheresis Sci 2018; 57 (01) 118-126
  • 95 Pabinger I, Fries D, Schöchl H, Streif W, Toller W. Tranexamic acid for treatment and prophylaxis of bleeding and hyperfibrinolysis. Wien Klin Wochenschr 2017; 129 (9-10): 303-316
  • 96 Thomas W, Downes K, Desborough MJR. Bleeding of unknown cause and unclassified bleeding disorders; diagnosis, pathophysiology and management. Haemophilia 2020; 26 (06) 946-957
  • 97 Sucker C, Hetzel GR, Grabensee B, Stockschlaeder M, Scharf RE. Amyloidosis and bleeding: pathophysiology, diagnosis, and therapy. Am J Kidney Dis 2006; 47 (06) 947-955
  • 98 Kritharis A, Al-Samkari H, Kuter DJ. Hereditary hemorrhagic telangiectasia: diagnosis and management from the hematologist's perspective. Haematologica 2018; 103 (09) 1433-1443
  • 99 Kumskova M, Flora GD, Staber J, Lentz SR, Chauhan AK. Characterization of bleeding symptoms in Ehlers-Danlos syndrome. J Thromb Haemost 2023; 21 (07) 1824-1830
  • 100 Franchini M. Hemostatic changes in thyroid diseases: haemostasis and thrombosis. Hematology 2006; 11 (03) 203-208
  • 101 Scharf RE. Drugs that affect platelet function. Semin Thromb Hemost 2012; 38 (08) 865-883
  • 102 Rebecca Couris R. Vitamins and minerals that affect hemostasis and antithrombotic therapies. Thromb Res 2005; 117 (1-2): 25-31 , discussion 39–42
  • 103 FitzGerald GA, Oates JA, Nowak J. Cigarette smoking and hemostatic function. Am Heart J 1988; 115 (1, Pt 2): 267-271
  • 104 Montagnana M, Danese E, Angelino D. et al. Dark chocolate modulates platelet function with a mechanism mediated by Flavan-3-Ol metabolites. Medicine (Baltimore) 2018; 97 (49) e13432