Subscribe to RSS
DOI: 10.1055/a-2268-0707
Experimentelles Umfeld in der Radiologie: nachhaltig Forschen
Experimental Environment in Radiology: Sustainable Research Supported by: Deutsche Forschungsgemeinschaft 233312120,331065168 (RTG 2375),445703531 (CRU5011)Supported by: Bundesministerium für Bildung und Forschung 01EK2201A (Climbing Crohn)
Zusammenfassung
Ziel
Forschung erfordert hohe Geldsummen, die indirekt von den Steuerzahlern bereitgestellt werden. Daher ist es wichtig, dass diese nachhaltig ist und nicht nur der Karriereentwicklung einzelner Personen dient. Ziel dieses Artikels ist es zu erörtern, was nachhaltige Forschung in der Radiologie ist, wie diese gestaltet werden kann und vor allem aufzuzeigen, dass diese möglich ist.
Materialien und Methoden
Es gibt verschiedene Ansätze, Nachhaltigkeit zu erreichen, die von reinem Erkenntnisgewinn, über translatierte Geräte und Kontrastmittel bis zu neuen klinischen Anwendungen reichen. Im ersten Schritt sollte man sich genau klar werden, was man mit der Forschung erreichen will und hierbei den Neuheitswert und den zu erwartenden Impact kritisch abwägen. Nachfolgend bedarf es einer sorgfältigen, langfristigen Planung des Vorhabens über oft 5–15 Jahre mit Definition klarer Teilschritte. Eine Sicherstellung der Finanzierung ist hierbei genauso wichtig, wie eine regelmäßige Kommunikation der Ergebnisse. Oftmals ist es hierbei sinnvoll frühzeitig die Zulassungsstellen und Verwertungspartner in das Vorhaben zu involvieren.
Ergebnisse und Schlussfolgerung
Die akademische Radiologie sollte sich nicht darauf beschränken, als Testplattform für Bildgebungsgeräte und Kontrastmittel aus der Industrie zu dienen, sondern versuchen, eigene Ideen und Entwicklungen zu verwirklichen. Viele akademische Standorte weltweit haben gezeigt, dass dies möglich ist. Beispiele aus meiner eigenen Forschung, insbesondere bezüglich der Entwicklung und Translation der Superresolution-Ultraschallbildgebung und der Entwicklung von Diagnostika und Nanopharmazeutika werden in diesem Artikel erläutert und Herausforderungen in verschiedenen Entwicklungsschritten diskutiert. Junge Radiologen werden ermutigt, sich größere und langfristigere Ziele zu setzen, um so unser Feld nachhaltig zu beeinflussen und weiterzuentwickeln.
Kernaussagen
-
Nachhaltige Forschung erfordert Kreativität und sorgfältige Planung.
-
Nachhaltige Forschung kann an mehreren Stufen des „Technical Readiness Levels“ einsetzen.
-
Langfristige Planung des Gesamtkonzepts (5–15 Jahre) mit klaren Zwischenschritten ist essenziell.
-
Die Kooperation mit der Industrie ist oft sinnvoll.
-
Drittmittelakquise muss begleitend sichergestellt werden.
Abstract
Purpose
Research requires large sums of money that are indirectly provided by taxpayers. It is therefore important that research is sustainable and does not just serve the career development of individuals. The aim of this article is to discuss what sustainable research in radiology is, how it can be organised and, above all, to show that it is possible.
Materials and Methods
There are various approaches to achieving sustainability, ranging from purely gaining knowledge to translated devices and contrast agents, and to new clinical applications. The first step is to clarify exactly what is intended to be achieved with the research and critically weigh up the novelty value and the expected impact. This should be followed by careful, long-term planning of the project over a period of 5–15 years with the definition of clear sub-steps. Securing funding is just as important here as regular communication of the results. It often makes sense to involve the regulatory authorities and commercialisation partners in the project at an early stage.
Results and Conclusion
Academic radiology should not limit itself to serving as a test platform for imaging devices and contrast agents from industry, but should try to realise its own ideas and developments. Many academic centres around the world have shown that this is possible. Examples from my own research, particularly in relation to the development and translation of super-resolution ultrasound imaging and the development of diagnostics and nanopharmaceuticals, are explained in this article and challenges at various stages of development are discussed. Young radiologists are encouraged to set bigger and more long-term goals in order to influence and develop our field in a sustainable way.
Key Points
-
Sustainable research requires creativity and careful planning
-
Sustainable research can start at several stages of the technical readiness level
-
Long-term planning of the overall concept (5–15 years) with clear intermediate steps is essential
-
Cooperation with industry is often useful
-
Acquisition of third-party funding must be ensured at the same time
Schlüsselwörter
THEMES - contrast agents - technology assessment - METHODS & TECHNIQUES - ultrasound - ethics - Translation - Spin-OffPublication History
Received: 06 December 2023
Accepted after revision: 13 February 2024
Article published online:
13 March 2024
© 2024. Thieme. All rights reserved.
Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany
-
Literatur
- 1 Emanuel EJ, Wendler D, Grady C. What makes clinical research ethical?. JAMA 2000; 283: 2701-2711 DOI: 10.1001/jama.283.20.2701.. (PMID: 10819955)
- 2 Decker SJ, Grajo JR, Hazelton TR. Research Challenges and Opportunities for Clinically Oriented Academic Radiology Departments. Acad Radiol 2016; 23: 43-52 DOI: 10.1016/j.acra.2015.10.007. (PMID: 26598485)
- 3 European Society of Radiology (ESR). Value-based radiology: what is the ESR doing, and what should we do in the future. Insights Imaging 2021; 12: 108 DOI: 10.1186/s13244-021-01056-9.
- 4 European Commission. Horizon Europe, Work Programme 2021–2022, General Annexes. Accessed May 10, 2022 at: https://ec.europa.eu/info/funding-tenders/opportunities/docs/2021–2027/horizon/wp-call/2021–2022/wp-13-general-annexes_horizon-2021–2022_en.pdf
- 5 Trovato GM. Sustainable medical research by effective and comprehensive medical skills: overcoming the frontiers by predictive, preventive and personalized medicine. EPMA J 2014; 5: 14 DOI: 10.1186/1878-5085-5-14. (PMID: 25250099)
- 6 Siepmann M, Schmitz G, Bzyl J. et al. Imaging tumor vascularity by tracing single microbubbles. Proc IEEE Int Ultrason Symp 2011; 38: 1906-1908 DOI: 10.7150/thno.37750.
- 7 Couture O, Besson B, Montaldo G. et al. Microbubble ultrasound super-localization imaging (MUSLI). IEEE Int Ultrason Symp 2011; 1285-1287 DOI: 10.1109/ULTSYM.2011.6293576.
- 8 Demené C, Robin J, Dizeux A. et al. Transcranial ultrafast ultrasound localization microscopy of brain vasculature in patients. Nat Biomed Eng 2021; 5: 219-228 DOI: 10.1038/s41551-021-00697-x. (PMID: 33723412)
- 9 Opacic T, Dencks S, Theek B. et al. Motion model ultrasound localization microscopy for preclinical and clinical multiparametric tumor characterization. Nat Commun 2018; 9: 1527 DOI: 10.1038/s41467-018-03973-8. (PMID: 29670096)
- 10 Denis L, Bodard S, Hingot V. et al. Sensing ultrasound localization microscopy for the visualization of glomeruli in living rats and humans. EBioMedicine 2023; 91: 104578 DOI: 10.1016/j.ebiom.2023.104578. (PMID: 37086650)
- 11 Christensen-Jeffries K, Couture O, Dayton PA. et al. Super-resolution ultrasound imaging. Ultrasound Med Biol 2020; 46: 865-891 DOI: 10.1016/j.ultrasmedbio.2019.11.013.. (PMID: 31973952)
- 12 Dencks S, Piepenbrock M, Opacic T. et al. Clinical pilot application of super-resolution US imaging in breast cancer. IEEE Trans Ultrason Ferroelectr Freq Control 2019; 66: 517-526 DOI: 10.1109/TUFFC.2018.2872067. (PMID: 30273150)
- 13 Porte C, Lisson T, Kohlen M. et al. Ultrasound localization microscopy for breast cancer imaging in patients: Protocol optimization and comparison with shear-wave elastography. Ultrasound Med Biol 2023; 50: 57-66 DOI: 10.1016/j.ultrasmedbio.2023.09.001..
- 14 Hauff P, Reinhardt M, Briel A. et al. Molecular targeting of lymph nodes with L-selectin ligand-specific US contrast agent: a feasibility study in mice and dogs. Radiology 2004; 231: 667-673 DOI: 10.1148/radiol.2313030425.
- 15 Palmowski M, Huppert J, Ladewig G. et al. Molecular profiling of angiogenesis with targeted ultrasound imaging: early assessment of anti-angiogenic therapy effects. Mol Cancer Ther 2008; 7: 101-109 DOI: 10.1158/1535-7163.MCT-07-0409.
- 16 Palmowski M, Morgenstern B, Hauff P. et al. Pharmacodynamics of streptavidin-coated cyanoacrylate mircobubbles designed for molecular ultrasound imaging. Invest Radiol 2008; 43: 162-169 DOI: 10.1097/RLI.0b013e31815a251b.
- 17 Curaj A, Wu Z, Fokong S. et al. Noninvasive molecular ultrasound monitoring of vessel healing following intravascular surgical procedures in a preclinical setup. Arterioscler Thromb Vasc Biol 2015; 35: 1366-1373 DOI: 10.1161/ATVBAHA.114.304857.
- 18 Lammers T, Koczera P, Fokong S. et al. Theranostic USPIO-loaded microbubbles for mediating and monitoring blood-brain barrier permeation. Adv Funct Mater 2015; 25: 36-43 DOI: 10.1002/adfm.201401199. (PMID: 25729344)
- 19 Rix A, Fokong S, Heringer S. et al. Molecular ultrasound imaging of αvβ3-Integrin expression in carotid arteries of pigs after vessel injury. Invest Radiol 2016; 51: 767-775 DOI: 10.1097/RLI.0000000000000282. (PMID: 27119438)
- 20 Ojha T, Pathak V, Drude N. et al. Shelf-Life Evaluation and Lyophilization of PBCA-Based Polymeric Microbubbles. Pharmaceutics 2019; 11: 433 DOI: 10.1097/RLI.0000000000000282. (PMID: 31454967)
- 21 Climbing Crohn Consortium Webpage. Accessed February 05, 2024 at: https://www.climbingcrohn.de/en/project-partners/uniklinik-aachen
- 22 Deshantri AK, Fens MH, Ruiter RWJ. et al. Liposomal dexamethasone inhibits tumor growth in an advanced human-mouse hybrid model of multiple myeloma. J Control Release 2019; 296: 232-240 DOI: 10.1016/j.jconrel.2019.01.028. (PMID: 30682443)
- 23 Banciu M, Metselaar JM, Schiffelers RM. et al. Liposomal glucocorticoids as tumor-targeted anti-angiogenic nanomedicine in B16 melanoma-bearing mice. J Steroid Biochem Mol Biol 2008; 111: 101-110 DOI: 10.1016/j.jsbmb.2008.05.004. (PMID: 18602825)
- 24 Quan L, Zhang Y, Crielaard BJ. et al. Nanomedicines for inflammatory arthritis: head-to-head comparison of glucocorticoid-containing polymers, micelles, and liposomes. ACS Nano 2014; 8: 458-466 DOI: 10.1021/nn4048205. (PMID: 24341611)
- 25 Metselaar J, Lammers T, Boquoi A. et al. A phase I first-in-man study to investigate the pharmacokinetics and safety of liposomal dexamethasone in patients with progressive multiple myeloma. Drug Deliv Transl Res 2023; 13: 915-923 DOI: 10.1007/s13346-022-01268-6.