Synlett 2024; 35(10): 1190-1194
DOI: 10.1055/a-2268-4386
cluster
Thieme Chemistry Journals Awardees 2023

Are β-Lactones Involved in Carbon-Based Olefination Reactions?

Jan Nowak
,
Michał Tryniszewski
,
This work was financed by the OPUS 16 program (Grant No. DEC-2018/31/B/ST5/01118) of the National Science Centre, Poland.


Abstract

Heteroatom-based olefinating reagents (e.g., organic phosphonates, sulfonates, etc.) are used to transform carbonyl compounds into alkenes, and their mechanism of action involves aldol-type addition, cyclization, and fragmentation of four-membered ring intermediates. We have developed an analogous process using ethyl 1,1,1,3,3,3-hexafluoroisopropyl methylmalonate, which converts electrophilic aryl aldehydes into α-methylcinnamates in up to 70% yield. The reaction plausibly proceeds through the formation of β-lactone that spontaneously decarboxylates under the reaction conditions. The results shed light on the Knoevenagel–Doebner olefination, for which decarboxylative anti-fragmentation of aldol-type adducts is usually considered.

Supporting Information



Publication History

Received: 19 December 2023

Accepted after revision: 14 February 2024

Accepted Manuscript online:
14 February 2024

Article published online:
02 April 2024

© 2024. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References and Notes

  • 2 Edmonds M, Abell A. In Modern Carbonyl Olefination, Chap. 1. Takeda T. Wiley-VCH; Weinheim: 2004. 1; and references cited therein
  • 3 Korotchenko VN, Nenajdenko VG, Balenkova ES, Shastin AV. Russ. Chem. Rev. 2004; 73: 957
  • 5 For a demonstration of mechanistic switch between anti-elimination, and cyclization–syn-fragmentation of trifluoroethyl β-hydroxysulfonates, see: Górski B, Basiak D, Grzesiński Ł, Barbasiewicz M. Org. Biomol. Chem. 2019; 17: 7660
  • 7 Xavier T, Condon S, Pichon C, Le Gall E, Presset M. Org. Lett. 2019; 21: 6135
  • 8 Baudoux J, Lefebvre P, Legay R, Lasne M.-C, Rouden J. Green Chem. 2010; 12: 252
  • 10 Adam W, Baeza J, Liu J.-C. J. Am. Chem. Soc. 1972; 94: 2000
  • 11 Mulzer J, Pointner A, Chucholowski A, Brüntrup G. J. Chem. Soc., Chem. Commun. 1979; 52
  • 12 McLaughlin C, Smith AD. Chem. Eur. J. 2021; 27: 1533
  • 14 For a subsequent decarboxylation of a tricyclic β-lactone formed by a nucleophile-catalyzed aldol lactonization process, see: Kong W, Romo D. J. Org. Chem. 2017; 82: 13161
  • 15 Danheiser RL, Nowick JS. J. Org. Chem. 1991; 56: 1176
  • 16 Wedler C, Kunath A, Schick H. J. Org. Chem. 1995; 60: 758
  • 17 Wedler C, Kleiner K, Kunath A, Schick H. Liebigs Ann. 1996; 881
  • 20 For an analogous process involving α,α-disubstituted aldehydes, see: Dixon GJ, Rodriguez MR, Chong TG, Kim KY, Downey CW. J. Org. Chem. 2022; 87: 14846
  • 21 For an aldol-Grob mechanism of the carbonyl–olefin metathesis between vinyl ethers and aldehydes, see: Rivero-Crespo M. Á, Tejeda-Serrano M, Pérez-Sánchez H, Cerón-Carrasco JP, Leyva-Pérez A. Angew. Chem. Int. Ed. 2020; 59: 3846
  • 22 Brady WT, Glang YF. J. Org. Chem. 1986; 51: 2145
  • 23 For an analogous synthesis of dihydrothiophenes and dihydrothiopyrans by elimination of carbon oxysulfide (O=C=S), see: Cromwell S, Sutio R, Zhang C, Such GK, Lupton DW. Angew. Chem. Int. Ed. 2022; 61: e202206647
  • 24 Compare: Tryniszewski M, Barbasiewicz M. Synthesis 2022; 54: 1446
  • 25 The pK a data for fluorinated alcohols were taken from: Zhu Z, Boger DL. J. Org. Chem. 2022; 87: 14657
  • 26 For a review of DBU opening processes, see: Muzart J. ChemistrySelect 2020; 5: 11608
  • 27 Under similar conditions (LiHMDS/THF), aryl hexafluoroisopropyl ethers eliminate HF to form aryl perfluoroisopropenyl ethers; see: Su J, Chen K, Kang Q.-K, Shi H. Angew. Chem. Int. Ed. 2023; 62: e202302908
  • 28 Compare: Adam W, Encarnación LA. A. Chem. Ber. 1982; 115: 2592
  • 29 See the Supporting Information for details
  • 30 α-Methylcinnamates 12am; General Procedure A 30 mL Schlenk flask was charged with diester 5b (2.2 mmol) and the appropriate aldehyde (2.0 mmol), and the mixture was purged with argon. Anhyd THF (8 mL) was added, followed by dropwise addition of DBU (0.6 mL; 4.0 mmol) over ~90 s with stirring. The flask was then immersed in an oil bath at 40 °C for 16 h. The mixture was cooled to rt, poured into 5% aq NaHCO3 (50 mL), and extracted with EtOAc (3 × 50 mL). The combined organic phases were washed with H2O (50 mL) and brine (50 mL), then dried (MgSO4), filtered, and concentrated. The residue was purified by column chromatography [silica gel (d = 20 cm; ø = 3 cm)]. Ethyl (2E)-2-Methyl-3-phenylacrylate (12a) Eluent: cyclohexane–toluene (2:1). Colorless oil; yield: 91 mg (0.48 mmol, 23%). 1H NMR (400 MHz, CDCl3): δ = 7.67 (d, J = 1.5 Hz, 1 H), 7.42–7.26 (m, 5 H), 4.26 (q, J = 7.1 Hz, 2 H), 2.10 (d, J = 1.5 Hz, 3 H), 1.34 (t, J = 7.1 Hz, 3 H). 13C NMR (100 MHz, CDCl3): δ = 168.7, 138.6, 136.0, 129.6, 128.6, 128.3, 128.2, 60.8, 14.3, 14.0. The NMR spectra were consistent with those reported in the literature.33 Ethyl (2E)-3-(2-Bromophenyl)-2-methylacrylate (12b) Eluent: cyclohexane–toluene (2:1). Colorless oil; yield: 170 mg (0.64 mmol, 32%). 1H NMR (400 MHz, CDCl3): δ = 7.69–7.66 (m, 1 H), 7.57 (dd, J = 8.0, 1.1 Hz, 1 H), 7.32–7.23 (m, 2 H), 7.17–7.10 (m, 1 H), 4.26 (q, J = 7.1 Hz, 2 H), 1.94 (d, J = 1.6 Hz, 3 H), 1.32 (t, J = 7.1 Hz, 3 H). 13C NMR (100 MHz, CDCl3): δ = 167.9, 137.9, 136.2, 132.6, 130.4, 130.3, 129.4, 126.9, 124.1, 60.9, 14.2, 13.9. The NMR spectra were consistent with those reported in the literature.33
  • 31 Ramachandran PV, Otoo B. Chem. Commun. 2015; 51: 12388
  • 32 Distinction between open-chain aldol-type adduct and cyclized β-lactone is difficult, when analyzing mixture of components with NMR spectroscopy. Therefore, we remain cautious with definite statements, concerning the structure of intermediate I.
  • 33 Leung PS.-W, Teng Y, Toy PH. Org. Lett. 2010; 12: 4996
  • 34 For a biosynthesis of olefinic hydrocarbons via β-lactones, see: Christenson, J. K.; Richman, J. E.; Jensen, M. R.; Neufeld, J. Y.; Wilmot, C. M.; Wackett, L. P. Biochemistry 2017, 56, 348; and references cited therein.