Subscribe to RSS
DOI: 10.1055/a-2268-4386
Are β-Lactones Involved in Carbon-Based Olefination Reactions?
This work was financed by the OPUS 16 program (Grant No. DEC-2018/31/B/ST5/01118) of the National Science Centre, Poland.
Abstract
Heteroatom-based olefinating reagents (e.g., organic phosphonates, sulfonates, etc.) are used to transform carbonyl compounds into alkenes, and their mechanism of action involves aldol-type addition, cyclization, and fragmentation of four-membered ring intermediates. We have developed an analogous process using ethyl 1,1,1,3,3,3-hexafluoroisopropyl methylmalonate, which converts electrophilic aryl aldehydes into α-methylcinnamates in up to 70% yield. The reaction plausibly proceeds through the formation of β-lactone that spontaneously decarboxylates under the reaction conditions. The results shed light on the Knoevenagel–Doebner olefination, for which decarboxylative anti-fragmentation of aldol-type adducts is usually considered.
Key words
olefination - carbonyl compounds - reaction mechanism - lactones - malonates - Knoevenagel–Doebner reactionSupporting Information
- Supporting information for this article is available online at https://doi.org/10.1055/a-2268-4386.
- Supporting Information
Publication History
Received: 19 December 2023
Accepted after revision: 14 February 2024
Accepted Manuscript online:
14 February 2024
Article published online:
02 April 2024
© 2024. Thieme. All rights reserved
Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany
-
References and Notes
- 1a Niyomchon S, Oppedisano A, Aillard P, Maulide N. Nat. Commun. 2017; 8: 1091
- 1b Merad J, Grant PS, Stopka T, Sabbatani J, Meyrelles R, Preinfalk A, Matyasovsky J, Maryasin B, González L, Maulide N. J. Am. Chem. Soc. 2022; 144: 12536
- 2 Edmonds M, Abell A. In Modern Carbonyl Olefination, Chap. 1. Takeda T. Wiley-VCH; Weinheim: 2004. 1; and references cited therein
- 3 Korotchenko VN, Nenajdenko VG, Balenkova ES, Shastin AV. Russ. Chem. Rev. 2004; 73: 957
- 4a Górski B, Talko A, Basak T, Barbasiewicz M. Org. Lett. 2017; 19: 1756
- 4b Górski B, Basiak D, Talko A, Basak T, Mazurek T, Barbasiewicz M. Eur. J. Org. Chem. 2018; 2018: 1774
- 4c Tryniszewski M, Basiak D, Barbasiewicz M. Org. Lett. 2022; 24: 4270
- 4d Basiak D, Barbasiewicz M. ARKIVOC 2021; (ii): 118
- 5 For a demonstration of mechanistic switch between anti-elimination, and cyclization–syn-fragmentation of trifluoroethyl β-hydroxysulfonates, see: Górski B, Basiak D, Grzesiński Ł, Barbasiewicz M. Org. Biomol. Chem. 2019; 17: 7660
- 6a List B, Doehring A, Hechavarria Fonseca MT, Wobser K, van Thienen H, Torres RR, Galilea PL. Adv. Synth. Catal. 2005; 347: 1558
- 6b List B, Doehring A, Hechavarria Fonseca MT, Jobb A, Rios Torres R. Tetrahedron 2006; 62: 476
- 6c Kawasaki S, Akagawa K, Kudo K. Adv. Synth. Catal. 2023; 365: 1811
- 7 Xavier T, Condon S, Pichon C, Le Gall E, Presset M. Org. Lett. 2019; 21: 6135
- 8 Baudoux J, Lefebvre P, Legay R, Lasne M.-C, Rouden J. Green Chem. 2010; 12: 252
- 9a Zacuto MJ. J. Org. Chem. 2019; 84: 6465
- 9b Xavier T, Condon S, Pichon C, Le Gall E, Presset M. Eur. J. Org. Chem. 2022; e202101392
- 10 Adam W, Baeza J, Liu J.-C. J. Am. Chem. Soc. 1972; 94: 2000
- 11 Mulzer J, Pointner A, Chucholowski A, Brüntrup G. J. Chem. Soc., Chem. Commun. 1979; 52
- 12 McLaughlin C, Smith AD. Chem. Eur. J. 2021; 27: 1533
- 13a Cortez GC, Tennyson RL, Romo D. J. Am. Chem. Soc. 2001; 123: 7945
- 13b Paull DH, Weatherwax A, Lectka T. Tetrahedron 2009; 65: 6771
- 14 For a subsequent decarboxylation of a tricyclic β-lactone formed by a nucleophile-catalyzed aldol lactonization process, see: Kong W, Romo D. J. Org. Chem. 2017; 82: 13161
- 15 Danheiser RL, Nowick JS. J. Org. Chem. 1991; 56: 1176
- 16 Wedler C, Kunath A, Schick H. J. Org. Chem. 1995; 60: 758
- 17 Wedler C, Kleiner K, Kunath A, Schick H. Liebigs Ann. 1996; 881
- 18a Kabalka GW, Tejedor D, Li N.-S, Malladi RR, Trotman S. J. Org. Chem. 1998; 63: 6438
- 18b Kabalka GW, Tejedor D, Li N.-S, Malladi RR, Trotman S. Tetrahedron 1998; 54: 15525
- 18c Kabalka GW, Li N.-S, Tejedor D, Malladi RR, Trotman S. J. Org. Chem. 1999; 64: 3157
- 18d Kabalka GW, Li N.-S, Tejedor D, Malladi RR, Gao X, Trotman S. Synth. Commun. 1999; 29: 2783
- 18e Curini M, Epifano F, Maltese F, Marcotullio MC. Eur. J. Org. Chem. 2003; 1631
- 19a Raju BC, Suman P. Chem. Eur. J. 2010; 16: 11840
- 19b Suman P, Rao NR, Raju BC. Helv. Chim. Acta 2013; 96: 1548
- 20 For an analogous process involving α,α-disubstituted aldehydes, see: Dixon GJ, Rodriguez MR, Chong TG, Kim KY, Downey CW. J. Org. Chem. 2022; 87: 14846
- 21 For an aldol-Grob mechanism of the carbonyl–olefin metathesis between vinyl ethers and aldehydes, see: Rivero-Crespo M. Á, Tejeda-Serrano M, Pérez-Sánchez H, Cerón-Carrasco JP, Leyva-Pérez A. Angew. Chem. Int. Ed. 2020; 59: 3846
- 22 Brady WT, Glang YF. J. Org. Chem. 1986; 51: 2145
- 23 For an analogous synthesis of dihydrothiophenes and dihydrothiopyrans by elimination of carbon oxysulfide (O=C=S), see: Cromwell S, Sutio R, Zhang C, Such GK, Lupton DW. Angew. Chem. Int. Ed. 2022; 61: e202206647
- 24 Compare: Tryniszewski M, Barbasiewicz M. Synthesis 2022; 54: 1446
- 25 The pK a data for fluorinated alcohols were taken from: Zhu Z, Boger DL. J. Org. Chem. 2022; 87: 14657
- 26 For a review of DBU opening processes, see: Muzart J. ChemistrySelect 2020; 5: 11608
- 27 Under similar conditions (LiHMDS/THF), aryl hexafluoroisopropyl ethers eliminate HF to form aryl perfluoroisopropenyl ethers; see: Su J, Chen K, Kang Q.-K, Shi H. Angew. Chem. Int. Ed. 2023; 62: e202302908
- 28 Compare: Adam W, Encarnación LA. A. Chem. Ber. 1982; 115: 2592
- 29 See the Supporting Information for details
- 30 α-Methylcinnamates 12a–m; General Procedure A 30 mL Schlenk flask was charged with diester 5b (2.2 mmol) and the appropriate aldehyde (2.0 mmol), and the mixture was purged with argon. Anhyd THF (8 mL) was added, followed by dropwise addition of DBU (0.6 mL; 4.0 mmol) over ~90 s with stirring. The flask was then immersed in an oil bath at 40 °C for 16 h. The mixture was cooled to rt, poured into 5% aq NaHCO3 (50 mL), and extracted with EtOAc (3 × 50 mL). The combined organic phases were washed with H2O (50 mL) and brine (50 mL), then dried (MgSO4), filtered, and concentrated. The residue was purified by column chromatography [silica gel (d = 20 cm; ø = 3 cm)]. Ethyl (2E)-2-Methyl-3-phenylacrylate (12a) Eluent: cyclohexane–toluene (2:1). Colorless oil; yield: 91 mg (0.48 mmol, 23%). 1H NMR (400 MHz, CDCl3): δ = 7.67 (d, J = 1.5 Hz, 1 H), 7.42–7.26 (m, 5 H), 4.26 (q, J = 7.1 Hz, 2 H), 2.10 (d, J = 1.5 Hz, 3 H), 1.34 (t, J = 7.1 Hz, 3 H). 13C NMR (100 MHz, CDCl3): δ = 168.7, 138.6, 136.0, 129.6, 128.6, 128.3, 128.2, 60.8, 14.3, 14.0. The NMR spectra were consistent with those reported in the literature.33 Ethyl (2E)-3-(2-Bromophenyl)-2-methylacrylate (12b) Eluent: cyclohexane–toluene (2:1). Colorless oil; yield: 170 mg (0.64 mmol, 32%). 1H NMR (400 MHz, CDCl3): δ = 7.69–7.66 (m, 1 H), 7.57 (dd, J = 8.0, 1.1 Hz, 1 H), 7.32–7.23 (m, 2 H), 7.17–7.10 (m, 1 H), 4.26 (q, J = 7.1 Hz, 2 H), 1.94 (d, J = 1.6 Hz, 3 H), 1.32 (t, J = 7.1 Hz, 3 H). 13C NMR (100 MHz, CDCl3): δ = 167.9, 137.9, 136.2, 132.6, 130.4, 130.3, 129.4, 126.9, 124.1, 60.9, 14.2, 13.9. The NMR spectra were consistent with those reported in the literature.33
- 31 Ramachandran PV, Otoo B. Chem. Commun. 2015; 51: 12388
- 32 Distinction between open-chain aldol-type adduct and cyclized β-lactone is difficult, when analyzing mixture of components with NMR spectroscopy. Therefore, we remain cautious with definite statements, concerning the structure of intermediate I.
- 33 Leung PS.-W, Teng Y, Toy PH. Org. Lett. 2010; 12: 4996
- 34 For a biosynthesis of olefinic hydrocarbons via β-lactones, see: Christenson, J. K.; Richman, J. E.; Jensen, M. R.; Neufeld, J. Y.; Wilmot, C. M.; Wackett, L. P. Biochemistry 2017, 56, 348; and references cited therein.
For recent reports on carbonyl olefination reactions, see:
For a review, see:
For recent reports, see:
For examples, see:
For a review, see:
For an analogous process involving trifluoromethyl ketones, see: