RSS-Feed abonnieren

DOI: 10.1055/a-2273-6318
The NFκB Signaling Pathway Is Involved in the Pathophysiological Process of Preeclampsia
Der NFκB-Signalweg ist am pathophysiologischen Prozess der Präeklampsie beteiligt Gefördert durch: First Clinical Medical School, Lanzhou University No. ldyyyn2022-16
Abstract
The high prevalence of preeclampsia (PE) is a major cause of maternal and fetal mortality and affects the long-term prognosis of both mother and baby. Termination of pregnancy is currently the only effective treatment for PE, so there is an urgent need for research into its pathogenesis and the development of new therapeutic approaches. The NFκB family of transcription factors has an essential role in inflammation and innate immunity. In this review, we summarize the role of NFκB in normal and preeclampsia pregnancies, the role of NFκB in existing treatment strategies, and potential NFκB treatment strategies.
Zusammenfassung
Die hohe Prävalenz von Präeklampsie (PE) ist eine wesentliche Ursache mütterlicher und fetaler Mortalität und wirkt sich auch auf die Langzeitprognose von Mutter und Kind aus. Der Schwangerschaftsabbruch stellt zurzeit die einzig effektive Therapie gegen PE dar. Damit besteht ein dringender Bedarf nach weiterer Forschung zur Pathogenese von PE sowie zur Entwicklung neuer Therapieansätze. Die NFκB-Familie der Transkriptionsfaktoren spielt eine wichtige Rolle in Entzündungsprozessen und für die angeborene Immunität. In dieser Übersichtsstudie fassen wir die Rolle von NFκB bei normalen und Präeklampsie-Schwangerschaften sowie die Bedeutung von NFκB in bereits existierenden Therapien und potenzielle NFκB-Behandlungsstrategien zusammen.
Publikationsverlauf
Eingereicht: 02. November 2023
Angenommen nach Revision: 20. Februar 2024
Artikel online veröffentlicht:
10. April 2024
© 2024. The Author(s). This is an open access article published by Thieme under the terms of the Creative Commons Attribution-NonDerivative-NonCommercial-License, permitting copying and reproduction so long as the original work is given appropriate credit. Contents may not be used for commercial purposes, or adapted, remixed, transformed or built upon. (https://creativecommons.org/licenses/by-nc-nd/4.0/).
Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany
-
References
- 1 Filipek A, Jurewicz E. Preeclampsia – a disease of pregnant women. Postepy Biochem 2018; 64: 232-229
- 2 Wang Y, Li B, Zhao Y. Inflammation in Preeclampsia: Genetic Biomarkers, Mechanisms, and Therapeutic Strategies. Front Immunol 2022; 13: 883404
- 3 Williams D. Long-term complications of preeclampsia. Semin Nephrol 2011; 31: 111-122
- 4 Beksac MS, Tanacan A, Ozten G. et al. Low-dose low-molecular-weight heparin prophylaxis against obstetrical complications in pregnancies with metabolic and immunological disorder-associated placental inflammation. J Matern Fetal Neonatal Med 2022; 35: 1546-1553
- 5 Kupka E, Hesselman S, Hastie R. et al. Low-dose aspirin use in pregnancy and the risk of preterm birth: a Swedish register-based cohort study. Am J Obstet Gynecol 2023; 228: 336.e1-336.e9
- 6 Romagano MP, Sherman LS, Shadpoor B. et al. Aspirin-Mediated Reset of Preeclamptic Placental Stem Cell Transcriptome – Implication for Stabilized Placental Function. Stem Cell Rev Rep 2022; 18: 3066-3082
- 7 Tomimori-Gi K, Katsuragi S, Kodama Y. et al. Low-dose aspirin therapy improves decidual arteriopathy in pregnant women with a history of preeclampsia. Virchows Arch 2022; 481: 713-720
- 8 Amylidi-Mohr S, Kubias J, Neumann S. et al. Reducing the Risk of Preterm Preeclampsia: Comparison of Two First Trimester Screening and Treatment Strategies in a Single Centre in Switzerland. Geburtshilfe Frauenheilkd 2021; 81: 1354-1361
- 9 Lu F, Gong H, Lei H. et al. Downregulation of cathepsin C alleviates endothelial cell dysfunction by suppressing p38 MAPK/NF-κB pathway in preeclampsia. Bioengineered 2022; 13: 3019-3028
- 10 Ding Y, Yang X, Han X. et al. Ferroptosis-related gene expression in the pathogenesis of preeclampsia. Front Genet 2022; 13: 927869
- 11 Tang R, Xiao G, Jian Y. et al. The Gut Microbiota Dysbiosis in Preeclampsia Contributed to Trophoblast Cell Proliferation, Invasion, and Migration via lncRNA BC030099/NF-κB Pathway. Mediators Inflamm 2022; 2022: 6367264
- 12 Lee S, Shin J, Kim JS. et al. Targeting TBK1 Attenuates LPS-Induced NLRP3 Inflammasome Activation by Regulating of mTORC1 Pathways in Trophoblasts. Front Immunol 2021; 12: 743700
- 13 Logan MK, Lett KE, McLaurin DM. et al. Coilin as a regulator of NF-kB mediated inflammation in preeclampsia. Biol Open 2022; 11: bio059326
- 14 Sakowicz A, Bralewska M, Pietrucha T. et al. Canonical, Non-Canonical and Atypical Pathways of Nuclear Factor кb Activation in Preeclampsia. Int J Mol Sci 2020; 21: 5574
- 15 Armistead B, Kadam L, Drewlo S. et al. The Role of NFkappaB in Healthy and Preeclamptic Placenta: Trophoblasts in the Spotlight. Int J Mol Sci 2020; 21: 1775
- 16 Oeckinghaus A, Ghosh S. The NF-kappaB family of transcription factors and its regulation. Cold Spring Harb Perspect Biol 2009; 1: a000034
- 17 Min C, Eddy SF, Sherr DH. et al. NF-kappaB and epithelial to mesenchymal transition of cancer. J Cell Biochem 2008; 104: 733-744
- 18 Thomsen LCV, Melton PE, Tollaksen K. et al. Refined phenotyping identifies links between preeclampsia and related diseases in a Norwegian preeclampsia family cohort. J Hypertens 2015; 33: 2294-2302
- 19 Johnson MP, Fitzpatrick E, Dyer TD. et al. Identification of two novel quantitative trait loci for pre-eclampsia susceptibility on chromosomes 5q and 13q using a variance components-based linkage approach. Mol Hum Reprod 2007; 13: 61-67
- 20 Silva Carmona A, Mendieta Zerón H. NF-κΒ and SOD expression in preeclamptic placentas. Turk J Med Sci 2016; 46: 783-788
- 21 Svensson J, Jenmalm MC, Matussek A. et al. Macrophages at the Fetal–Maternal Interface Express Markers of Alternative Activation and Are Induced by M-CSF and IL-10. J Immunol 2011; 187: 3671-3682
- 22 Choi H, Yang S-W, Joo J-S. et al. Sialylated IVIg binding to DC-SIGN+ Hofbauer cells induces immune tolerance through the caveolin-1/NF-kB pathway and IL-10 secretion. Clin Immunol 2023; 246: 109215
- 23 Robertson SA, Care AS, Moldenhauer LM. Regulatory T cells in embryo implantation and the immune response to pregnancy. J Clin Invest 2018; 128: 4224-4235
- 24 Zhang X, Wei H. Role of Decidual Natural Killer Cells in Human Pregnancy and Related Pregnancy Complications. Front Immunol 2021; 12: 728291
- 25 Gnainsky Y, Granot I, Aldo PB. et al. Local injury of the endometrium induces an inflammatory response that promotes successful implantation. Fertil Steril 2010; 94: 2030-2036
- 26 Kim C, Cathey AL, Watkins DJ. et al. Adverse birth outcomes are associated with circulating matrix metalloproteinases among pregnant women in Puerto Rico. J Reprod Immunol 2023; 159: 103991
- 27 Jing M, Chen X, Qiu H. et al. Insights into the immunomodulatory regulation of matrix metalloproteinase at the maternal-fetal interface during early pregnancy and pregnancy-related diseases. Front Immunol 2022; 13: 1067661
- 28 Mukherjee I, Dhar R, Singh S. et al. Oxidative stress-induced impairment of trophoblast function causes preeclampsia through the unfolded protein response pathway. Sci Rep 2021; 11: 18415
- 29 Sakowicz A. The role of NFκB in the three stages of pregnancy – implantation, maintenance, and labour: a review article. BJOG 2018; 125: 1379-1387
- 30 Singh N, Herbert B, Sooranna G. et al. Is there an inflammatory stimulus to human term labour?. PLoS One 2021; 16: e0256545
- 31 Condon JC, Hardy DB, Kovaric K. et al. Up-regulation of the progesterone receptor (PR)-C isoform in laboring myometrium by activation of nuclear factor-kappaB may contribute to the onset of labor through inhibition of PR function. Mol Endocrinol 2006; 20: 764-775
- 32 Singh N, Herbert B, Sooranna GR. et al. Is myometrial inflammation a cause or a consequence of term human labour?. J Endocrinol 2017; 235: 69-83
- 33 Li R, Xie J, Xu W. et al. LPS-induced PTGS2 manipulates the inflammatory response through trophoblast invasion in preeclampsia via NF-kappaB pathway. Reprod Biol 2022; 22: 100696
- 34 Somerset DA, Zheng Y, Kilby MD. et al. Normal human pregnancy is associated with an elevation in the immune suppressive CD25+ CD4+ regulatory T-cell subset. Immunology 2004; 112: 38-43
- 35 Ding H, Dai Y, Lei Y. et al. Upregulation of CD81 in trophoblasts induces an imbalance of Treg/Th17 cells by promoting IL-6 expression in preeclampsia. Cell Mol Immunol 2019; 16: 302-312
- 36 Ruan Q, Chen YH. Nuclear factor-κB in immunity and inflammation: the Treg and Th17 connection. Adv Exp Med Biol 2012; 946: 207-221
- 37 Miller D, Motomura K, Galaz J. et al. Cellular immune responses in the pathophysiology of preeclampsia. J Leukoc Biol 2022; 111: 237-260
- 38 Gill N, Leng Y, Romero R. et al. The immunophenotype of decidual macrophages in acute atherosis. Am J Reprod Immunol 2019; 81: e13098
- 39 King AE, Critchley HO, Kelly RW. The NF-kappaB pathway in human endometrium and first trimester decidua. Mol Hum Reprod 2001; 7: 175-183
- 40 Rabalski AJ, Gyenis L, Litchfield DW. Molecular Pathways: Emergence of Protein Kinase CK2 (CSNK2) as a Potential Target to Inhibit Survival and DNA Damage Response and Repair Pathways in Cancer Cells. Clin Cancer Res 2016; 22: 2840-2847
- 41 Huang WC, Hung MC. Beyond NF-κB activation: nuclear functions of IκB kinase α. J Biomed Sci 2013; 20: 3
- 42 Sakowicz A, Bralewska M, Pietrucha T. et al. The Preeclamptic Environment Promotes the Activation of Transcription Factor Kappa B by P53/RSK1 Complex in a HTR8/SVneo Trophoblastic Cell Line. Int J Mol Sci 2021; 22: 10200
- 43 Vaughan JE, Walsh SW. Activation of NF-κB in placentas of women with preeclampsia. Hypertens Pregnancy 2012; 31: 243-251
- 44 Li G, Wei W, Suo L. et al. Low-Dose Aspirin Prevents Kidney Damage in LPS-Induced Preeclampsia by Inhibiting the WNT5A and NF-κB Signaling Pathways. Front Endocrinol (Lausanne) 2021; 12: 639592
- 45 Litang Z, Hong W, Weimin Z. et al. Serum NF-κBp65, TLR4 as Biomarker for Diagnosis of Preeclampsia. Open Med (Wars) 2017; 12: 399-402
- 46 Armistead B, Kadam L, Drewlo S. et al. The Role of NFκB in Healthy and Preeclamptic Placenta: Trophoblasts in the Spotlight. Int J Mol Sci 2020; 21: 1775
- 47 Mercnik MH, Schliefsteiner C, Fluhr H. et al. Placental macrophages present distinct polarization pattern and effector functions depending on clinical onset of preeclampsia. Front Immunol 2022; 13: 1095879
- 48 Shaha S, Patel K, Riddell M. Cell polarity signaling in the regulation of syncytiotrophoblast homeostasis and inflammatory response. Placenta 2023; 141: 26-34
- 49 Tanacan A, Beksac MS, Orgul G. et al. Impact of extractable nuclear antigen, anti-double stranded DNA, antiphospholipid antibody, and anticardiolipin antibody positivity on obstetrical complications and pregnancy outcomes. Hum Antibodies 2019; 27: 135-141
- 50 Chappell S, Morgan L. Searching for genetic clues to the causes of pre-eclampsia. Clin Sci (Lond) 2006; 110: 443-458
- 51 Parthiban PS, Mahendra J, Logaranjani A. et al. Association between specific periodontal pathogens, Toll-like receptor-4, and nuclear factor-κB expression in placental tissues of pre-eclamptic women with periodontitis. J Investig Clin Dent 2018;
- 52 Le QA, Akhter R, Coulton KM. et al. Periodontitis and Preeclampsia in Pregnancy: A Systematic Review and Meta-Analysis. Matern Child Health J 2022; 26: 2419-2443
- 53 Konopka T, Zakrzewska A. Periodontitis and risk for preeclampsia — a systematic review. Ginekol Pol 2020; 91: 158-164
- 54 León R, Silva N, Ovalle A. et al. Detection of Porphyromonas gingivalis in the amniotic fluid in pregnant women with a diagnosis of threatened premature labor. J Periodontol 2007; 78: 1249-1255
- 55 Figuero E, Han YW, Furuichi Y. Periodontal diseases and adverse pregnancy outcomes: Mechanisms. Periodontol 2000 2020; 83: 175-188
- 56 Mahendra J, Parthiban PS, Mahendra L. et al. Evidence Linking the Role of Placental Expressions of Peroxisome Proliferator-Activated Receptor-γ and Nuclear Factor-Kappa B in the Pathogenesis of Preeclampsia Associated With Periodontitis. J Periodontol 2016; 87: 962-970
- 57 Hernández HG, Hernández-Castañeda AA, Pieschacón MP. et al. ZNF718, HOXA4, and ZFP57 are differentially methylated in periodontitis in comparison with periodontal health: Epigenome-wide DNA methylation pilot study. J Periodontal Res 2021; 56: 710-725
- 58 Chopra A, Radhakrishnan R, Sharma M. Porphyromonas gingivalis and adverse pregnancy outcomes: a review on its intricate pathogenic mechanisms. Crit Rev Microbiol 2020; 46: 213-236
- 59 Thomas C, Timofeeva I, Bouchoucha E. et al. Oral and periodontal assessment at the first trimester of pregnancy: The PERISCOPE longitudinal study. Acta Obstet Gynecol Scand 2023; 102: 669-680
- 60 Wen X, Fu X, Zhao C. et al. The bidirectional relationship between periodontal disease and pregnancy via the interaction of oral microorganisms, hormone and immune response. Front Microbiol 2023; 14: 1070917
- 61 Chen X, Li P, Liu M. et al. Gut dysbiosis induces the development of pre-eclampsia through bacterial translocation. Gut 2020; 69: 513-522
- 62 Chang Y, Chen Y, Zhou Q. et al. Short-chain fatty acids accompanying changes in the gut microbiome contribute to the development of hypertension in patients with preeclampsia. Clin Sci (Lond) 2020; 134: 289-302
- 63 Altemani F, Barrett HL, Gomez-Arango L. et al. Pregnant women who develop preeclampsia have lower abundance of the butyrate-producer Coprococcus in their gut microbiota. Pregnancy Hypertens 2021; 23: 211-219
- 64 Lv LJ, Li SH, Li SC. et al. Early-Onset Preeclampsia Is Associated With Gut Microbial Alterations in Antepartum and Postpartum Women. Front Cell Infect Microbiol 2019; 9: 224
- 65 Xue P, Zheng M, Gong P. et al. Single administration of ultra-low-dose lipopolysaccharide in rat early pregnancy induces TLR4 activation in the placenta contributing to preeclampsia. PLoS One 2015; 10: e0124001
- 66 Tang R, Xiao G, Jian Y. et al. The Gut Microbiota Dysbiosis in Preeclampsia Contributed to Trophoblast Cell Proliferation, Invasion, and Migration via lncRNA BC030099/NF-kappaB Pathway. Mediators Inflamm 2022; 2022: 6367264
- 67 Apicella C, Ruano CSM, Thilaganathan B. et al. Pan-Genomic Regulation of Gene Expression in Normal and Pathological Human Placentas. Cells 2023; 12: 578
- 68 Svensson J, Jenmalm MC, Matussek A. et al. Macrophages at the fetal-maternal interface express markers of alternative activation and are induced by M-CSF and IL-10. J Immunol 2011; 187: 3671-3682
- 69 Sakowicz A, Pietrucha T, Rybak-Krzyszkowska M. et al. Double hit of NEMO gene in preeclampsia. PLoS One 2017; 12: e0180065
- 70 Olarerin-George AO, Anton L, Hwang Y-C. et al. A functional genomics screen for microRNA regulators of NF-kappaB signaling. BMC Biol 2013; 11: 19
- 71 Fan Y, Dong Z, Zhou G. et al. Elevated miR-23a impairs trophoblast migration and invasiveness through HDAC2 inhibition and NF-κB activation. Life Sci 2020; 261: 118358
- 72 Zhou G, Li Z, Hu P. et al. miR-219a suppresses human trophoblast cell invasion and proliferation by targeting vascular endothelial growth factor receptor 2 (VEGFR2). J Assist Reprod Genet 2021; 38: 461-470
- 73 Sheedy FJ, Palsson-McDermott E, Hennessy EJ. et al. Negative regulation of TLR4 via targeting of the proinflammatory tumor suppressor PDCD4 by the microRNA miR-21. Nat Immunol 2010; 11: 141-147
- 74 Dai Y, Diao Z, Sun H. et al. MicroRNA-155 is involved in the remodelling of human-trophoblast-derived HTR-8/SVneo cells induced by lipopolysaccharides. Hum Reprod 2011; 26: 1882-1891
- 75 Kim S, Lee K-S, Choi S. et al. NF-κB-responsive miRNA-31–5p elicits endothelial dysfunction associated with preeclampsia via down-regulation of endothelial nitric-oxide synthase. J Biol Chem 2018; 293: 18989-19000
- 76 Yin A, Chen Q, Zhong M. et al. MicroRNA-138 improves LPS-induced trophoblast dysfunction through targeting RELA and NF-κB signaling. Cell Cycle 2021; 20: 508-521
- 77 Park M, Choi S, Kim S. et al. NF-κB-responsive miR-155 induces functional impairment of vascular smooth muscle cells by downregulating soluble guanylyl cyclase. Exp Mol Med 2019; 51: 1-12
- 78 Tay Y, Rinn J, Pandolfi PP. The multilayered complexity of ceRNA crosstalk and competition. Nature 2014; 505: 344-352
- 79 Cipolla GA, de Oliveira JC, Salviano-Silva A. et al. Long Non-Coding RNAs in Multifactorial Diseases: Another Layer of Complexity. Noncoding RNA 2018; 4: 13
- 80 Cheng D, Jiang S, Chen J. et al. The Increased lncRNA MIR503HG in Preeclampsia Modulated Trophoblast Cell Proliferation, Invasion, and Migration via Regulating Matrix Metalloproteinases and NF-κB Signaling. Dis Markers 2019; 2019: 4976845
- 81 Johnson JD, Louis JM. Does race or ethnicity play a role in the origin, pathophysiology, and outcomes of preeclampsia? An expert review of the literature. Am J Obstet Gynecol 2022; 226: S876-S885
- 82 Jiang L, Tang K, Magee LA. et al. A global view of hypertensive disorders and diabetes mellitus during pregnancy. Nat Rev Endocrinol 2022; 18: 760-775
- 83 Millar LK, Stollberg J, DeBuque L. et al. Fetal membrane distention: determination of the intrauterine surface area and distention of the fetal membranes preterm and at term. Am J Obstet Gynecol 2000; 182: 128-134
- 84 Padron JG, Norman Ing ND, Ng PoK. et al. Stretch Causes Cell Stress and the Downregulation of Nrf2 in Primary Amnion Cells. Biomolecules 2022; 12: 766
- 85 Lim R, Barker G, Lappas M. The transcription factor Nrf2 is decreased after spontaneous term labour in human fetal membranes where it exerts anti-inflammatory properties. Placenta 2015; 36: 7-17
- 86 Gurbuz RH, Atilla P, Orgul G. et al. Impaired Placentation and Early Pregnancy Loss in Patients with MTHFR Polymorphisms and Type-1 Diabetes Mellitus. Fetal Pediatr Pathol 2019; 38: 376-386
- 87 Qin Y, Bily D, Aguirre M. et al. Understanding PPARγ and Its Agonists on Trophoblast Differentiation and Invasion: Potential Therapeutic Targets for Gestational Diabetes Mellitus and Preeclampsia. Nutrients 2023; 15: 2459
- 88 Grimaldi B, Kohan-Ghadr H-R, Drewlo S. The Potential for Placental Activation of PPARγ to Improve the Angiogenic Profile in Preeclampsia. Cells 2022; 11: 3514
- 89 Ju Y, Gu L, Hu M. et al. Andrographolide exerts a neuroprotective effect by regulating the LRP1-mediated PPARγ/NF-κB pathway. Eur J Pharmacol 2023; 951: 175756
- 90 Polvani S, Tarocchi M, Galli A. PPARγ and Oxidative Stress: Con(β) Catenating NRF2 and FOXO. PPAR Res 2012; 2012: 641087
- 91 Psilopatis I, Vrettou K, Fleckenstein FN. et al. The Role of Peroxisome Proliferator-Activated Receptors in Preeclampsia. Cells 2023; 12: 647
- 92 McCarthy FP, Drewlo S, Kingdom J. et al. Peroxisome proliferator-activated receptor-γ as a potential therapeutic target in the treatment of preeclampsia. Hypertension 2011; 58: 280-286
- 93 Kadam L, Kohan-Ghadr HR, Drewlo S. The balancing act – PPAR-γ’s roles at the maternal-fetal interface. Syst Biol Reprod Med 2015; 61: 65-71
- 94 Nair AR, Silva SD, Agbor LN. et al. Endothelial PPARγ (Peroxisome Proliferator-Activated Receptor-γ) Protects From Angiotensin II-Induced Endothelial Dysfunction in Adult Offspring Born From Pregnancies Complicated by Hypertension. Hypertension 2019; 74: 173-183
- 95 Kadam L, Kilburn B, Baczyk D. et al. Rosiglitazone blocks first trimester in-vitro placental injury caused by NF-κB-mediated inflammation. Sci Rep 2019; 9: 2018
- 96 Wang J, Yang W, Xiao W. et al. The association between smoking during pregnancy and hypertensive disorders of pregnancy: A systematic review and meta-analysis. Int J Gynaecol Obstet 2022; 157: 31-41
- 97 Conde-Agudelo A, Althabe F, Belizán JM. et al. Cigarette smoking during pregnancy and risk of preeclampsia: a systematic review. Am J Obstet Gynecol 1999; 181: 1026-1035
- 98 Xu H, Shi Q, Mo Y. et al. Downregulation of α7 nicotinic acetylcholine receptors in peripheral blood monocytes is associated with enhanced inflammation in preeclampsia. BMC Pregnancy Childbirth 2019; 19: 188
- 99 Liu Y, Yang J, Bao J. et al. Activation of the cholinergic anti-inflammatory pathway by nicotine ameliorates lipopolysaccharide-induced preeclampsia-like symptoms in pregnant rats. Placenta 2017; 49: 23-32
- 100 Sharentuya N, Tomimatsu T, Mimura K. et al. Nicotine suppresses interleukin-6 production from vascular endothelial cells: a possible therapeutic role of nicotine for preeclampsia. Reprod Sci 2010; 17: 556-563
- 101 Lan R, Yang Y, Song J. et al. Fas regulates the apoptosis and migration of trophoblast cells by targeting NF-κB. Exp Ther Med 2021; 22: 1055
- 102 Tan W, Fu H, Zhou X. et al. ANKRD37 inhibits trophoblast migration and invasion by regulating the NF-κB pathway in preeclampsia. J Gene Med 2022; 24: e3416
- 103 Xie Y, Li X, Lv D. et al. TREM-1 amplifies trophoblastic inflammation via activating NF-κB pathway during preeclampsia. Placenta 2021; 115
- 104 Huang Z, Du G, Huang X. et al. The enhancer RNA lnc-SLC4A1–1 epigenetically regulates unexplained recurrent pregnancy loss (URPL) by activating CXCL8 and NF-kB pathway. EBioMedicine 2018; 38: 162-170
- 105 Xue P, Fan W, Diao Z. et al. Up-regulation of PTEN via LPS/AP-1/NF-κB pathway inhibits trophoblast invasion contributing to preeclampsia. Mol Immunol 2020; 118: 182-190
- 106 Li R, Xie J, Xu W. et al. LPS-induced PTGS2 manipulates the inflammatory response through trophoblast invasion in preeclampsia via NF-κB pathway. Reprod Biology 2022; 22: 100696
- 107 Li S, Li A, Zhai L. et al. Suppression of FPR2 expression inhibits inflammation in preeclampsia by improving the biological functions of trophoblast via NF-κB pathway. J Assist Reprod Genet 2022; 39: 239-250
- 108 Furmento VA, Marino J, Blank VC. et al. The granulocyte colony-stimulating factor (G-CSF) upregulates metalloproteinase-2 and VEGF through PI3K/Akt and Erk1/2 activation in human trophoblast Swan 71 cells. Placenta 2014; 35: 937-946
- 109 Cabral-Pacheco GA, Garza-Veloz I, Castruita-De la Rosa C. et al. The Roles of Matrix Metalloproteinases and Their Inhibitors in Human Diseases. Int J Mol Sci 2020; 21: 9739
- 110 Zhu Q, Wu X, Long Q. et al. Mechanism of astragalus injection to relieve symptoms of preeclampsia rat model by inhibiting MMP-9/sFlt-1/TNF-α. Altern Ther Health Med 2023; 29: 125-131
- 111 Staun-Ram E, Goldman S, Gabarin D. et al. Expression and importance of matrix metalloproteinase 2 and 9 (MMP-2 and -9) in human trophoblast invasion. Reprod Biol Endocrinol 2004; 2: 59
- 112 Bahabayi A, Yang N, Xu T. et al. Expression of Matrix Metalloproteinase-2,-7,-9 in Serum during Pregnancy in Patients with Pre-Eclampsia: A Prospective Study. Int J Environ Res Public Health 2022; 19: 14500
- 113 Wu L, Zhao K-Q, Wang W. et al. Nuclear receptor coactivator 6 promotes HTR-8/SVneo cell invasion and migration by activating NF-κB-mediated MMP9 transcription. Cell Prolif 2020; 53: e12876
- 114 Oh SY, Hwang JR, Choi M. et al. Autophagy regulates trophoblast invasion by targeting NF-κB activity. Sci Rep 2020; 10: 14033
- 115 Liu J, Song G, Meng T. et al. UL16-Binding Protein 1 Induced HTR-8/SVneo Autophagy via NF-κB Suppression Mediated by TNF-α Secreted through uNK Cells. Biomed Res Int 2020; 2020: 9280372
- 116 Oh SY, Hwang JR, Choi M. et al. Autophagy regulates trophoblast invasion by targeting NF-κB activity. Sci Rep 2020; 10: 14033
- 117 Trocoli A, Djavaheri-Mergny M. The complex interplay between autophagy and NF-κB signaling pathways in cancer cells. Am J Cancer Res 2011; 1: 629-649
- 118 Copetti T, Demarchi F, Schneider C. p65/RelA binds and activates the beclin 1 promoter. Autophagy 2009; 5: 858-859
- 119 Cheng C, Zhang J, Li X. et al. NPRC deletion mitigated atherosclerosis by inhibiting oxidative stress, inflammation and apoptosis in ApoE knockout mice. Signal Transduct Target Ther 2023; 8: 290
- 120 Chaabani R, Bejaoui M, Ben Jeddou I. et al. Effect of the Non-steroidal Anti-inflammatory Drug Diclofenac on Ischemia-Reperfusion Injury in Rat Liver: A Nitric Oxide-Dependent Mechanism. Inflammation 2023; 46: 1221-1235
- 121 Kim JH, Kim JY, Park M. et al. NF-κB-dependent miR-31/155 biogenesis is essential for TNF-α-induced impairment of endothelial progenitor cell function. Exp Mol Med 2020; 52: 1298-1309
- 122 Villalobos-Labra R, Liu R, Spaans F. et al. Placenta-derived extracellular vesicles from preeclamptic and healthy pregnancies impair ex vivo vascular endothelial function. Biosci Rep 2022; 42: BSR20222185
- 123 Russell TM, Richardson DR. The good Samaritan glutathione-S-transferase P1: An evolving relationship in nitric oxide metabolism mediated by the direct interactions between multiple effector molecules. Redox Biol 2023; 59: 102568
- 124 Sakowicz A. The Targeting of Nuclear Factor Kappa B by Drugs Adopted for the Prevention and Treatment of Preeclampsia. Int J Mol Sci 2022; 23: 2881
- 125 Zuo Q, Zou Y, Huang S. et al. Aspirin reduces sFlt-1-mediated apoptosis of trophoblast cells in preeclampsia. Mol Hum Reprod 2021; 27: gaaa089
- 126 Kim J, Lee KS, Kim J-H. et al. Aspirin prevents TNF-α-induced endothelial cell dysfunction by regulating the NF-κB-dependent miR-155/eNOS pathway: Role of a miR-155/eNOS axis in preeclampsia. Free Radic Biol Med 2017; 104: 185-198
- 127 Wu Y, Kang F, Yang Y. et al. The protective effect of magnesium sulfate on placental inflammation via suppressing the NF-κB pathway in a preeclampsia-like rat model. Pregnancy Hypertens 2023; 31: 4-13
- 128 Shi CX, Qi QH, Xu J. et al. Protective effect of magnesium sulfate on cranial nerves in preeclampsia rats through NF-κB/ICAM-1 pathway. Eur Rev Med Pharmacol Sci 2020; 24: 2785-2794
- 129 Kovo M, Mevorach-Zussman N, Khatib N. et al. The Effects of Magnesium Sulfate on the Inflammatory Response of Placentas Perfused With Lipopolysaccharide: Using the Ex Vivo Dual-Perfused Human Single-Cotyledon Model. Reprod Sci 2018; 25: 1224-1230
- 130 Ma Y, Yang Y, Lv M. et al. 1,25(OH)2D3 alleviates LPS-induced preeclampsia-like rats impairment in the protective effect by TLR4/NF-kB pathway. Placenta 2022; 130: 34-41
- 131 Brownfoot FC, Hannan NJ, Cannon P. et al. Sulfasalazine reduces placental secretion of antiangiogenic factors, up-regulates the secretion of placental growth factor and rescues endothelial dysfunction. EBioMedicine 2019; 41: 636-648
- 132 Hu J, Zhang J, Zhu B. Protective effect of metformin on a rat model of lipopolysaccharide-induced preeclampsia. Fundam Clin Pharmacol 2019; 33: 649-658
- 133 Zhang Y, Liu W, Zhong Y. et al. Metformin Corrects Glucose Metabolism Reprogramming and NLRP3 Inflammasome-Induced Pyroptosis via Inhibiting the TLR4/NF-κB/PFKFB3 Signaling in Trophoblasts: Implication for a Potential Therapy of Preeclampsia. Oxid Med Cell Longev 2021; 2021: 1806344
- 134 Zhao Y, Zong F. Inhibiting USP14 ameliorates inflammatory responses in trophoblast cells by suppressing MAPK/NF-κB signaling. Immun Inflamm Dis 2021; 9: 1016-1024
- 135 Zhu YZ, Wu W, Zhu Q. et al. Discovery of Leonuri and therapeutical applications: From bench to bedside. Pharmacol Ther 2018; 188: 26-35
- 136 Zong F, Zhao Y. Alkaloid leonurine exerts anti-inflammatory effects via modulating MST1 expression in trophoblast cells. Immun Inflamm Dis 2021; 9: 1439-1446
- 137 Hu PF, Sun FF, Qian J. Leonurine Exerts Anti-Catabolic and Anti-Apoptotic Effects via Nuclear Factor kappa B (NF-κB) and Mitogen-Activated Protein Kinase (MAPK) Signaling Pathways in Chondrocytes. Med Sci Monit 2019; 25: 6271-6280
- 138 Estrada-Gutierrez G, Cappello RE, Mishra N. et al. Increased expression of matrix metalloproteinase-1 in systemic vessels of preeclamptic women: a critical mediator of vascular dysfunction. Am J Pathol 2011; 178: 451-460
- 139 Walsh SW, Nugent WH, Al Dulaimi M. et al. Proteases Activate Pregnancy Neutrophils by a Protease-Activated Receptor 1 Pathway: Epigenetic Implications for Preeclampsia. Reprod Sci 2020; 27: 2115-2127
- 140 Sha H, Ma Y, Tong Y. et al. Apocynin inhibits placental TLR4/NF-κB signaling pathway and ameliorates preeclampsia-like symptoms in rats. Pregnancy Hypertens 2020; 22: 210-215
- 141 Tuerxun D, Aierken R, Zhang YM. et al. Astragaloside IV alleviates lipopolysaccharide-induced preeclampsia-like phenotypes via suppressing the inflammatory responses. Kaohsiung J Med Sci 2021; 37: 236-244
- 142 Li Y, Liu Y, Chen J. et al. Protective effect of Fisetin on the lipopolysaccharide-induced preeclampsia-like rats. Hypertens Pregnancy 2022; 41: 23-30
- 143 Esmaeil N, Anaraki SB, Gharagozloo M. et al. Silymarin impacts on immune system as an immunomodulator: One key for many locks. Int Immunopharmacol 2017; 50: 194-201
- 144 Matias ML, Gomes VJ, Romao-Veiga M. et al. Silibinin Downregulates the NF-κB Pathway and NLRP1/NLRP3 Inflammasomes in Monocytes from Pregnant Women with Preeclampsia. Molecules 2019; 24: 1548
- 145 Eneroth-Grimfors E, Westgren M, Ericson M. et al. Autonomic cardiovascular control in normal and pre-eclamptic pregnancy. Acta Obstet Gynecol Scand 1994; 73: 680-684
- 146 Wang Z, Zhao G, Zibrila AI. et al. Acetylcholine ameliorated hypoxia-induced oxidative stress and apoptosis in trophoblast cells via p38 MAPK/NF-κB pathway. Mol Hum Reprod 2021; 27: gaab045
- 147 Wang Z, Zibrila AI, Liu S. et al. Acetylcholine ameliorated TNF-α-induced primary trophoblast malfunction via muscarinic receptors†. Biol Reprod 2020; 103: 1238-1248
- 148 Matias ML, Romao-Veiga M, Ribeiro VR. et al. Progesterone and vitamin D downregulate the activation of the NLRP1/NLRP3 inflammasomes and TLR4-MyD88-NF-κB pathway in monocytes from pregnant women with preeclampsia. J Reprod Immunol 2021; 144: 103286
- 149 Pepe GJ, Albrecht ED. Regulation of functional differentiation of the placental villous syncytiotrophoblast by estrogen during primate pregnancy. Steroids 1999; 64: 624-627
- 150 Sagrillo-Fagundes L, Assunção Salustiano EM, Ruano R. et al. Melatonin modulates autophagy and inflammation protecting human placental trophoblast from hypoxia/reoxygenation. J Pineal Res 2018; 65: e12520
- 151 Eddy AC, Howell JA, Chapman H. et al. Biopolymer-Delivered, Maternally Sequestered NF-κB (Nuclear Factor-κB) Inhibitory Peptide for Treatment of Preeclampsia. Hypertension 2020; 75: 193-201