Erfahrungsheilkunde 2024; 73(02): 68-74
DOI: 10.1055/a-2274-7846
Praxis

Intermittierendes Hypoxietraining – hin zu mehr Energie und Leistung

Robert Percy Marshall
,
Andrea Gartenbach

Zusammenfassung

Menschliche Leistung wird direkt durch die mitochondriale Energiegewinnung unserer Zellen bestimmt. Unsere Fähigkeit, dabei zu regenerieren und auf neue Herausforderungen adäquat zu reagieren, wird maßgeblich durch unser vegetatives Nervensystem reguliert. Gesunde Mitochondrien und ein funktionsfähiges Vegetativum sind daher von entscheidender Bedeutung (für High Performer und Athleten). Selbst durch kurze hypoxische Trainings wird eine signifikante Anzahl von Genen – vorrangig des HIF-1α und weiterer Wachstumsfaktoren – positiv beeinflusst, was zu einer indirekten Beeinflussung der Belastungstoleranz führt. Der Einfluss auf die zelluläre und nervale Regenerationsfähigkeit ist für den Sportler in Hinblick auf die Leistungsfähigkeit von enormer Bedeutung. Durch intermittierendes Hypoxietraining können nicht nur die parasympathische Aktivität und die Selbstregulation des ANS positiv unterstützt werden, sondern es kann auch aktiv als Unterstützung im Rahmen der Regeneration und zirkadianen Rhythmik eingesetzt werden. Damit ist das intermittierende Hypoxietraining ein sinnvolles, effektives und präventives Werkzeug zum Erhalt der Leistungsfähigkeit, zur Optimierung der Regenerationsfähigkeit sowie in der Therapie von Erkrankungen.

Abstract

Human performance is directly influenced by the mitochondrial energy production of our cells. Our ability to regenerate and adequately respond to new challenges is largely regulated by our autonomic nervous system. Therefore, healthy mitochondria as well as a functioning autonomic nervous system are of crucial importance (for high performers and athletes). Even short hypoxic training sessions have a positive effect on a significant number of genes – primarily HIF-1α and other growth factors – resulting in an indirect impact on the exercise tolerance. The influence on the cellular and nerval regeneration capacity is of enormous importance for an athlete in terms of performance. An intermittent hypoxia training cannot only provide positive support for parasympathetic activity and self-regulation of the ANS, but can also be actively used to support regeneration and circadian rhythm. Therefore, the intermittent hypoxia training is a useful, effective and preventive tool for maintaining performance, optimizing regeneration capacity, and treating illnesses.



Publication History

Article published online:
09 April 2024

© 2024. Thieme. All rights reserved.

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • Literatur

  • 1 Picard M, Turnbull DM. Linking the metabolic state and mitochondrial DNA in chronic disease, health, and aging. Diabetes 2013; 62: 672-678
  • 2 Marshall RP, Droste J-N, Giessing J. et al. Role of creatine supplementation in conditions involving mitochondrial dysfunction: A narrative review. Nutrients 2022; 14: 529
  • 3 Diaz-Vegas A, Sanchez-Aguilera P, Krycer JR. et al. Is mitochondrial dysfunction a common root of noncommunicable chronic diseases?. Endocri Rev 2020; 41: 491-517
  • 4 Devic S. Warburg effect – A consequence or the cause of carcinogenesis?. J Cancer 2016; 7: 817-822
  • 5 Vander Heiden MG, Cantley LC, Thompson CB. Understanding the Warburg effect: The metabolic requirements of cell proliferation. Science 2009; 324: 1029-1033
  • 6 Droste J-N. Umweltbedingungen. In: . Brauner T, Müller J, Beinert K. Sportwissenschaft. München: Elsevier; 2022: 261-269
  • 7 Viscor G, Ricart A, Pages T. et al. Intermittent hypoxia for obstructive sleep apnea?. High Alt Med Biol 2014; 15: 520-521
  • 8 Canouï-Poitrine F, Veerabudun K, Larmignat P. et al. Risk prediction score for severe high altitude illness: A cohort study. PLoS One 2014; 9: e100642
  • 9 Richalet J-P, Lhuissier FJ. Aging, tolerance to high altitude, and cardiorespiratory response to hypoxia. High Alt Med Biol 2015; 16: 117-124
  • 10 Viscor G, Torrella JR, Corral L. et al. Physiological and biological responses to short-term intermittent hypobaric hypoxia exposure: From sports and mountain medicine to new biomedical applications. Front Physiol 2018; 9: 814
  • 11 Voronina T, Grechko N, Shikhlyarova A. et al. Intermittent hypoxic training as an effective method of activation therapy. Cardiometry 2017; DOI: 10.12710/cardiometry.2017.9399.
  • 12 Faiss R, Girard O, Millet GP. Advancing hypoxic training in team sports: From intermittent hypoxic training to repeated sprint training in hypoxia. Br J Sports Med 2013; 47: i45-i50
  • 13 Sanchez AMJ, Borrani F. Effects of intermittent hypoxic training performed at high hypoxia level on exercise performance in highly trained runners. J Sports Sci 2018; 36: 2045-2052
  • 14 Susta D, Dudnik E, Glazachev OS. A programme based on repeated hypoxia-hyperoxia exposure and light exercise enhances performance in athletes with overtraining syndrome: A pilot study. Clin Physiol Funct Imag 2017; 37: 276-281
  • 15 Lukyanova LD, Dudchenko AV, Germanova EL. et al. Mitochondrial signaling in formation of body resistance to hypoxia. Interm Hypox 2011; 391-417
  • 16 Semenza GL. Regulation of oxygen homeostasis by hypoxia-inducible factor 1. Physiology (Bethesda) 2009; 24: 97-106
  • 17 Fukuda R, Zhang H, Kim J. et al. HIF-1 regulates cytochrome oxidase subunits to optimize efficiency of respiration in hypoxic cells. Cell 2007; 129: 111-122
  • 18 Ristow M. Unraveling the truth about antioxidants: Mitohormesis explains ROS-induced health benefits. Nat Med 2014; 20: 709-711
  • 19 Jiang BH, Semenza GL, Bauer C. et al. Hypoxia-inducible factor 1 levels vary exponentially over a physiologically relevant range of O2 tension. Am J Physiol 1996; 271: C1172-C1180
  • 20 Wang GL, Jiang BH, Rue EA. et al. Hypoxia-inducible factor 1 is a basic-helix-loop-helix-PAS heterodimer regulated by cellular O2 tension. Proc Natl Acad Sci USA 1995; 92: 5510-5514
  • 21 Semenza GL. Hydroxylation of HIF-1: Oxygen sensing at the molecular level. Physiology 2004; 19: 176-182
  • 22 Yu AY, Frid MG, Shimoda LA. et al. Temporal, spatial, and oxygen-regulated expression of hypoxia-inducible factor-1 in the lung. Am J Physi Lung Cell Mol Phys 1998; 275: L818-L826
  • 23 Zhao Y-C, Guo W, Gao B-H. Hypoxic training upregulates mitochondrial turnover and angiogenesis of skeletal muscle in mice. Life Sci 2022; 291: 119340
  • 24 Tsai H-H, Chang S-C, Chou C-H. et al. Exercise training alleviates hypoxia-induced mitochondrial dysfunction in the lymphocytes of sedentary males. Sci Rep 2016; 6: 35170
  • 25 Kim J, Tchernyshyov I, Semenza GL. et al. HIF-1-mediated expression of pyruvate dehydrogenase kinase: A metabolic switch required for cellular adaptation to hypoxia. Cell Metab 2006; 3: 177-185
  • 26 Levine BD, Stray-Gundersen J. Dose-response of altitude training: How much altitude is enough?. Hypox Exerc 2006; 233-247
  • 27 Wilber RL, Stray-Gundersen J, Levine BD. Effect of hypoxic “dose” on physiological responses and sea-level performance. Med Sci Sports Exerc 2007; 39: 1590-1599
  • 28 Rozova K, Mankovska I. The effect of intermittent hypoxic training on lung and heart tissues of healthy rats. Pneumonol Alergol Pol 2012; 80: 296-300
  • 29 Manukhina EB, Downey HF, Shi X. et al. Intermittent hypoxia training protects cerebrovascular function in Alzheimer’s disease. Experim Biol Med 2016; 241: 1351-1363
  • 30 Davidge ST, Baker PN, McLaughlin MK. et al. Nitric oxide produced by endothelial cells increases production of eicosanoids through activation of prostaglandin H synthase. Circul Res 1995; 77: 274-283
  • 31 Manukhina EB, Downey HF, Mallet RT. Role of nitric oxide in cardiovascular adaptation to intermittent hypoxia. Experim Biol Med 2006; 231: 343-365
  • 32 Rey S, Semenza GL. Hypoxia-inducible factor-1-dependent mechanisms of vascularization and vascular remodelling. Cardiovas Res 2010; 86: 236-242
  • 33 Li X, Zhao H, Wu Y. et al. Up-regulation of hypoxia-inducible factor-1α enhanced the cardioprotective effects of ischemic postconditioning in hyperlipidemic rats. Acta Biochim Biophys Sin 2014; 46: 112-118
  • 34 Zhou S, Yi T, Liu R. et al. Proteomics identification of annexin A2 as a key mediator in the metastasis and proangiogenesis of endometrial cells in human adenomyosis. Molecul Cell Proteom 2012; 11 M112.017988
  • 35 Bhattarai D, Xu X, Lee K. Hypoxia-inducible factor-1 (HIF-1) inhibitors from the last decade (2007 to 2016): A “structure-activity relationship” perspective. Medic Res Rev 2018; 38: 1404-1442
  • 36 Wang Y, Pu L, Li Z. et al. Hypoxia-inducible factor-1α gene expression and apoptosis in ischemia-reperfusion injury: A rat model of early-stage pressure ulcer. Nurs Res 2016; 65: 35-46
  • 37 Zhang H, Bosch-Marce M, Shimoda LA. et al. Mitochondrial autophagy is an HIF-1-dependent adaptive metabolic response to hypoxia. J Biol Chem 2008; 283: 10892-10903
  • 38 Semenza GL. Hypoxia-inducible factors: Coupling glucose metabolism and redox regulation with induction of the breast cancer stem cell phenotype. EMBO J 2017; 36: 252-259
  • 39 Hainsworth R, Drinkhill MJ, Rivera-Chira M. The autonomic nervous system at high altitude. Clin Auton Res 2007; 17: 13-19
  • 40 Kanai M, Nishihara F, Shiga T. et al. Alterations in autonomic nervous control of heart rate among tourists at 2700 and 3700 m above sea level. Wildern Environm Med 2001; 12: 8-12
  • 41 Farinelli CC, Kayser B, Binzoni T. et al. Autonomic nervous control of heart rate at altitude (5050 m). Eur J Appl Physiol Occup Physiol 1994; 69: 502-507
  • 42 Taralov Z, Terziyski K, Dimov P. et al. Assessment of the acute impact of normobaric hypoxia as a part of an intermittent hypoxic training on heart rate variability. Coret Vasa 2015; 57: e251-e256
  • 43 Paralikar SJ, Paralikar JH. High-altitude medicine. Ind J Occup Environm Med 2010; 14: 6
  • 44 Peacock AJ. Oxygen at high altitude. BMJ 1998; 317: 1063-1066
  • 45 Bernardi l, Passino C, spadacini G. et al. Cardiovascular autonomic modulation and activity of carotid baroreceptors at altitude. Clin Sci 1998; 95: 565-573
  • 46 Marshall JM. Chemoreceptors and cardiovascular control in acute and chronic systemic hypoxia. Braz J Med Biol Res 1998; 31: 863-888
  • 47 Bobyleva OV, Glazachev OS. Changes in autonomic response and resistance to acute graded hypoxia during intermittent hypoxic training. Hum Physiol 2007; 33: 199-206
  • 48 Babic T, Browning KN. The role of vagal neurocircuits in the regulation of nausea and vomiting. Eur J Pharmacol 2014; 722: 38-47
  • 49 Breit S, Kupferberg A, Rogler G. et al. Vagus nerve as modulator of the brain-gut axis in psychiatric and inflammatory disorders. Front Psych 2018; 9: 44
  • 50 LeBouef T, Yaker Z, Whited L. Physiology, autonomic nervous system. Treasure Island (FL): StatPearls; 2022
  • 51 Aubert AE, Seps B, Beckers F. Heart rate variability in athletes. Sports Med 2003; 33: 889-919
  • 52 Michael S, Graham KS, Davis GM. Cardiac autonomic responses during exercise and post-exercise recovery using heart rate variability and systolic time intervals – A review. Front Physiol 2017; 8: 301
  • 53 Buchheit M, Papelier Y, Laursen PB. et al. Noninvasive assessment of cardiac parasympathetic function: Postexercise heart rate recovery or heart rate? variability Am. J Physiol Heart Circ Physiol 2007; 293: H8-H10
  • 54 Cipryan L. The effect of fitness level on cardiac autonomic regulation, IL-6, total antioxidant capacity, and muscle damage responses to a single bout of high-intensity interval training. J Sport Health Sci 2018; 7: 363-371
  • 55 Dixon EM, Kamath MV, McCartney N. et al. Neural regulation of heart rate variability in endurance athletes and sedentary controls. Cardiovasc Res 1992; 26: 713-719
  • 56 Stanley J, Peake JM, Buchheit M. Cardiac parasympathetic reactivation following exercise: Implications for training prescription. Sports Med 2013; 43: 1259-1277
  • 57 Seiler S, Haugen O, Kuffel E. Autonomic recovery after exercise in trained athletes: Intensity and duration effects. Med Sci Sports Exerc 2007; 39: 1366-1373
  • 58 Korobeynikov G, Korobeynikova L, Potop V. et al. Heart rate variability system in elite athletes with different levels of stress resistance. J Phys Educ Sport 2018; 18: 550-554
  • 59 Barbas I, Fatouros IG, Douroudos II. et al. Physiological and performance adaptations of elite Greco-Roman wrestlers during a one-day tournament. Eur J Appl Physiol 2011; 111: 1421-1436
  • 60 Vladimir P. Assessment of physical and technical training level in basic specialization stage in women’s artistic gymnastics. J Phys Educ Sport 2013; 13: 114
  • 61 Laborde S, Mosley E, Mertgen A. Vagal tank theory: The three Rs of cardiac vagal control functioning – Resting, reactivity, and recovery. Front Neurosci 2018; 12: 458
  • 62 Hottenrott L, Ketelhut S, Hottenrott K. Commentary. Vagal tank theory: The three Rs of cardiac vagal control functioning – Resting, reactivity, and recovery. Front Neurosci 2019; 13: 1300
  • 63 Porges SW. The polyvagal perspective. Biol Psychol 2007; 74: 116-143
  • 64 Thayer JF, Ahs F, Fredrikson M. et al. A meta-analysis of heart rate variability and neuroimaging studies: Implications for heart rate variability as a marker of stress and health. Neurosci Biobehav Rev 2012; 36: 747-756
  • 65 Lehrer P, Kaur K, Sharma A. et al. Rate variability biofeedback improves emotional and physical health and performance: A systematic review and meta analysis. Appl Psychophys Biofeedb 2020; 45: 109-129
  • 66 Peçanha T, Bartels R, Brito LC. et al. Methods of assessment of the post-exercise cardiac autonomic recovery: A methodological review. Int J Cardiol 2017; 227: 795-802
  • 67 Perez-Gaido M, Lalanza JF, Parrado E. et al. Can HRV biofeedback improve short-term effort recovery? Implications for intermittent load sports. Appl Psychophys Biofeedb 2021; 46: 215-226
  • 68 Semenza GL, Shimoda LA, Prabhakar NR. Regulation of gene expression by HIF-1. Novartis Found Symp 2006; 272: 2-8 discussion 8–14, 33–36
  • 69 Vogt M, Puntschart A, Geiser J. et al. Molecular adaptations in human skeletal muscle to endurance training under simulated hypoxic conditions. J Appl Physiol 2001; 91: 173-182
  • 70 Brocherie F, Millet GP, D’Hulst G. et al. Repeated maximal-intensity hypoxic exercise superimposed to hypoxic residence boosts skeletal muscle transcriptional responses in elite team-sport athletes. Acta Physiol (Oxford) 2018; 222 DOI: 10.1111/apha.12851.
  • 71 Girard O, Brocherie F, Goods PSR. et al. An updated panorama of “living low-training high” altitude/hypoxic methods. Front Sports Active Liv 2020; 2: 26
  • 72 Finaud J, Lac G, Filaire E. Oxidative stress: Relationship with exercise and training. Sports Med 2006; 36: 327-358
  • 73 Jung W-S, Kim S-W, Park H-Y. Interval hypoxic training enhances athletic performance and does not adversely affect immune function in middle- and long-distance runners. Int J Environm Res Public Health 2020; 17: 1934
  • 74 Venter RE. Role of sleep in performance and recovery of athletes: A review article. S Afr J Res Sport Phys Educ Recr 2012; 34: 167-184
  • 75 Walsh NP, Halson SL, Sargent C. et al. Sleep and the athlete: Narrative review and 2021 expert consensus recommendations. Br J Sports Med 2020; DOI: 10.1136/bjsports-2020-102025.
  • 76 Nédélec M, Halson S, Abaidia A-E. et al. Stress, sleep and recovery in elite soccer: A critical review of the literature. Sports Med 2015; 45: 1387-1400
  • 77 Fullagar HHK, Skorski S, Duffield R. et al. Impaired sleep and recovery after night matches in elite football players. J Sports Sci 2016; 34: 1333-1339
  • 78 Swinbourne R, Gill N, Vaile J. et al. Prevalence of poor sleep quality, sleepiness and obstructive sleep apnoea risk factors in athletes. Eur J Sport Sci 2016; 16: 850-858
  • 79 Carriço S, Skorski S, Duffield R. et al. Post-match sleeping behavior based on match scheduling over a season in elite football players. Sci Med Footb 2018; 2: 9-15