CC BY 4.0 · SynOpen 2024; 08(01): 83-90
DOI: 10.1055/a-2280-0055
graphical review
Virtual Collection Electrochemical Organic Synthesis

Electrochemical Generation of Ketyl Radicals and Their Applications

Zhoumei Tan
,
Kun Xu
,
Chengchu Zeng
Financial support from the National Natural Science Foundation of China (22171015 and 22271009), the Beijing­ Municipal Natural Science Foundation (2222003), and the Beijing Municipal Education Committee Project (KZ202110005003, KM202110005006) is gratefully acknowledged.


Abstract

Ketyl radicals display new reactivities beyond the intrinsic electrophilicity of carbonyls. Recent progress in organic electrosynthesis has fueled the generation and utilization of ketyl radicals under ‘greener’ conditions. This graphical review summarizes these electrochemical advancements into three major categories: cross-pinacol couplings, coupling of carbonyls with alkyl radical precursors, and coupling of carbonyls with unsaturated systems (alkenes, alkynes, cyanoarenes, and N-heterocycles).



Publication History

Received: 28 January 2024

Accepted after revision: 01 March 2024

Accepted Manuscript online:
01 March 2024

Article published online:
18 March 2024

© 2024. The Author(s). This is an open access article published by Thieme under the terms of the Creative Commons Attribution License, permitting copying and reproduction so long as the original work is given appropriate credit. Contents may not be used for commercial purposes or adapted, remixed, transformed or built upon. (https://creativecommons.org/licenses/by/4.0/)

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

    • 1a Péter A, Agasti S, Knowles O, Pye E, Procter DJ. Chem. Soc. Rev. 2021; 50: 5349
    • 1b Xia Q, Dong J.-Y, Song H.-J, Wang Q.-M. Chem. Eur. J. 2019; 25: 2949
    • 2a Waldvogel SR, Lips S, Selt M, Riehl B, Kampf CJ. Chem. Rev. 2018; 118: 6706
    • 2b Zhu CJ, Ang NW. J, Meyer TH, Qiu YA, Ackermann L. ACS Cent. Sci. 2021; 7: 415
    • 2c Novaes LF. T, Liu J.-J, Shen Y.-F, Lu L.-X, Meinhardt JM, Lin S. Chem. Soc. Rev. 2021; 50: 7941
    • 2d Cheng X, Lei A.-W, Mei T.-S, Xu H.-C, Xu K, Zeng C.-C. CCS Chem. 2022; 4: 1120
    • 2e Malapit CA, Prater MB, Cabrera-Pardo JR, Li M, Pham TD, McFadden TP, Blank S, Minteer SD. Chem. Rev. 2022; 122: 3180
    • 2f Tan Z.-M, Zhang H.-N, Xu K, Zeng C.-C. Sci. China Chem. 2024; 67: 450
    • 3a Kise N, Shiozawa Y, Ueda N. Tetrahedron 2007; 63: 5415
    • 3b Wang L.-J, Ye P, Tan N.-H, Zhang B. Green Chem. 2022; 24: 8386
    • 4a Lian F, Xu K, Zeng C.-C. CCS Chem. 2023; 5: 1973
    • 4b Wu H, Li X, Yang L, Chen W, Zou C, Deng W, Wang Z, Hu J, Li Y, Huang Y.-B. Org. Lett. 2022; 24: 9342
    • 4c Ashraf MA, Lee Y, Iqbal N, Iqbal N, Cho EJ. iScience 2021; 24: 103388
    • 5a Shono T, Mitani M. J. Am. Chem. Soc. 1971; 93: 5284
    • 5b Shono T, Nishiguchi I, Ohmizu H, Mitani M. J. Am. Chem. Soc. 1978; 100: 545
    • 5c Shono T, Kashimura S, Mori Y, Hayashi T, Soejima T, Yamaguchi Y. J. Org. Chem. 1989; 54: 6001
    • 5d Hu P.-F, Peters BK, Malapit CA, Vantourout JC, Wang P, Li J.-J, Mele L, Echeverria P.-G, Minteer SD, Baran PS. J. Am. Chem. Soc. 2020; 142: 20979
    • 5e Edgecomb JM, Alektiar SN, Cowper NG. W, Sowin JA, Wickens ZK. J. Am. Chem. Soc. 2023; 145: 20169
    • 5f Wu H.-T, Chen W.-H, Deng W.-J, Yang L, Li X.-L, Hu Y.-F, Li Y.-B, Chen L, Huang Y.-B. Org. Lett. 2022; 24: 1412
    • 5g Derosa J, Garrido-Barros P, Peters JC. Inorg. Chem. 2022; 61: 6672
    • 5h Dapkekar AB, Satyanarayana G. Chem. Commun. 2023; 59: 2915
    • 6a Zhang S, Li L.-J, Li J.-J, Shi J.-X, Xu K, Gao W.-C, Zong L.-Y, Li G.-G, Findlater M. Angew. Chem. Int. Ed. 2021; 60: 7275
    • 6b Zhang X, Yang C, Gao H, Wang L, Guo L, Xia W.-J. Org. Lett. 2021; 23: 3472
    • 7a He T.-Y, Liang C.-Q, Huang S.-L. Chem. Sci. 2023; 14: 143
    • 7b Wang H, Xu K. Chin. J. Org. Chem. 2023; 43: 789
    • 7c Liu H.-F, He M.-X, Tang H.-T. Org. Chem. Front. 2022; 9: 5955
    • 7d Wang M.-R, Zhang C.-Q, Ci CG, Jiang H.-F, Dixneuf PH, Zhang M. J. Am. Chem. Soc. 2023; 145: 10967