Kardiologie up2date 2024; 20(02): 153-176
DOI: 10.1055/a-2283-9942
Kardiale Bildgebung

Bildgebende Diagnostik bei pulmonaler Hypertonie

Diagnostic Imaging of Pulmonary Hypertension
Roman Johannes Gertz
,
Jan Robert Kröger
,
Stephan Rosenkranz
,
Alexander Christian Bunck

Die pulmonale Hypertonie (PH) ist ein häufiges und komplexes Krankheitsbild. Unabhängig von ihrer Ätiologie geht sie mit einer hohen Morbidität und Mortalität einher. Im multidisziplinären diagnostischen Algorithmus und Management der PH kommt dem Radiologen bei der frühzeitigen Diagnosestellung, der Subklassifikation und der Prognoseabschätzung eine wegweisende Rolle zu.

Abstract

Pulmonary hypertension (PH) is a disease with considerable morbidity and, depending on its severity, can be associated with a significantly increased mortality. Therefore, timely diagnostic confirmation and definitive clarification of the etiology are crucial to prevent disease progression as early as possible and to initiate targeted therapy. Defined by an increase in mean pulmonary arterial pressure, the final diagnosis can only be confirmed invasively via right heart catheterization. However, a broad series of typical non-invasive imaging findings can already provide clues to the presence of PH. Thus, the radiologist plays an important role in raising early suspicion of PH and, if necessary, to initiate further clarification. Basic knowledge of the typical image findings of the disease are therefore important for every radiologist.

Imaging also plays an important role in clarifying the underlying pathogenesis of PH. For a reliable subclassification, prognosis assessment and initiation of an adequate therapy, the examination and image findings of the different modalities used must be combined and ideally interpreted in an interdisciplinary manner. This should be done at a designated PH expert center.

Kernaussagen
  • Die PH ist definiert als eine Erhöhung des mPAP > 20 mmHg. Klinisch werden 5 Krankheitsgruppen unterschieden. Unabhängig von der Ätiologie ist die PH mit einer hohen Morbidität und Mortalität assoziiert.

  • Es gibt kein bildgebendes Kriterium, um die Diagnose einer PH sicher stellen zu können. Der Durchmesser des TP und der TP/A-Quotient sollten, angepasst an die klinische Vortestwahrscheinlichkeit, interpretiert werden. Multiparametrische Ansätze mit verschiedenen auf Basis von CT-Aufnahmen abgeleiteten Größen (TP-Durchmesser, Wanddicke des RVOT, Septumdeviation oder RV/LV-Quotient) bieten eine höhere diagnostische Genauigkeit.

  • Die CT sollte bei allen Patienten mit Verdacht auf eine PH erwogen werden und kann wichtige Hinweise auf deren Ätiologie liefern.

  • Die V/Q-Szintigrafie ist weiterhin der Goldstandard zum Screening auf eine CTEPH. Eine unauffällige Thoraxröntgenaufnahme und eine unauffällige V/Q-Szintigrafie schließen eine CTEPH faktisch aus.

  • Die DECT erlaubt neben der morphologischen CT-Information die Beurteilung und Quantifizierung der Jodaufnahme des Lungenparenchyms als Surrogat für die pulmonale Perfusion. Als „One-Stop-Shop“-Untersuchung hat die DECT das Potenzial, multimodale Diagnostikansätze der PH zukünftig zu ersetzen.

  • Die CMR ist der Goldstandard zur Beurteilung der rechtsventrikulären Volumina und Funktion bei Patienten mit PH und liefert für die Prognoseabschätzung der PAH wichtige Parameter (RVEF, SVI, RVESVI).



Publication History

Article published online:
01 July 2024

© 2024. Thieme. All rights reserved.

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • Literatur

  • 1 Humbert M, Kovacs G, Hoeper MM. et al. 2022 ESC/ERS Guidelines for the diagnosis and treatment of pulmonary hypertension: Developed by the task force for the diagnosis and treatment of pulmonary hypertension of the European Society of Cardiology (ESC) and the European Respiratory Society (ERS). Eur Heart J 2022; 43: 3618-3731
  • 2 Simonneau G, Montani D, Celermajer DS. et al. Haemodynamic definitions and updated clinical classification of pulmonary hypertension. Eur Respir J 2019; 53: 1801913
  • 3 Sysol JR, Machado RF. Classification and pathophysiology of pulmonary hypertension. Continuing Cardiology Education 2018; 4: 2-12
  • 4 Coghlan JG, Handler C. Connective tissue associated pulmonary arterial hypertension. Lupus 2006; 15: 138-142
  • 5 Lettieri CJ, Nathan SD, Barnett SD. et al. Prevalence and outcomes of pulmonary arterial hypertension in advanced idiopathic pulmonary fibrosis. Chest 2006; 129: 746-752
  • 6 Nunes H, Humbert M, Capron F. et al. Pulmonary hypertension associated with sarcoidosis: mechanisms, haemodynamics and prognosis. Thorax 2006; 61: 68-74
  • 7 Rubin LJ. Diagnosis and management of pulmonary arterial hypertension: ACCP evidence-based clinical practice guidelines. Chest 2006; 126: 7S-10S
  • 8 Mehta S, Helmersen D, Provencher S. et al. Diagnostic evaluation and management of chronic thromboembolic pulmonary hypertension: a clinical practice guideline. Can Respir J 2010; 17: 301-334
  • 9 Delcroix M, Lang I, Pepke-Zaba J. et al. Long-Term Outcome of Patients With Chronic Thromboembolic Pulmonary Hypertension: Results From an International Prospective Registry. Circulation 2016; 133: 859-871
  • 10 Lang IM, Pesavento R, Bonderman D, Yuan JX-J. Risk factors and basic mechanisms of chronic thromboembolic pulmonary hypertension: a current understanding. Eur Respir J 2013; 41: 462-468
  • 11 Armstrong I, Billings C, Kiely DG. et al. The patient experience of pulmonary hypertension: a large cross-sectional study of UK patients. BMC Pulm Med 2019; 19: 67
  • 12 Strange G, Gabbay E, Kermeen F. et al. Time from Symptoms to Definitive Diagnosis of Idiopathic Pulmonary Arterial Hypertension: The Delay Study. Pulm Circ 2013; 3: 89-94
  • 13 Kiely DG, Lawrie A, Humbert M. Screening strategies for pulmonary arterial hypertension. Eur Heart J Suppl 2019; 21: K9-K20
  • 14 Ascha M, Renapurkar RD, Tonelli AR. A review of imaging modalities in pulmonary hypertension. Ann Thorac Med 2017; 12: 61-73
  • 15 Remy-Jardin M, Ryerson CJ, Schiebler ML. et al. Imaging of Pulmonary Hypertension in Adults: A Position Paper from the Fleischner Society. Radiology 2021; 298: 531-549
  • 16 Galiè N, Humbert M, Vachiery J-L. et al. 2015 ESC/ERS Guidelines for the diagnosis and treatment of pulmonary hypertension: The Joint Task Force for the Diagnosis and Treatment of Pulmonary Hypertension of the European Society of Cardiology (ESC) and the European Respiratory Society (ERS): Endor. Eur Heart J 2016; 37: 67-119
  • 17 Rich S, Dantzker DR, Ayres SM. et al. Primary pulmonary hypertension. A national prospective study. Ann Intern Med 1987; 107: 216-223
  • 18 Grünig E, Peacock AJ. Imaging the heart in pulmonary hypertension: an update. Eur Respir Rev 2015; 24: 653-664
  • 19 Baque-Juston MC, Wells AU, Hansell DM. Pericardial thickening or effusion in patients with pulmonary artery hypertension: a CT study. AJR Am J Roentgenol 1999; 172: 361-364
  • 20 Kuriyama K, Gamsu G, Stern RG. et al. CT-determined pulmonary artery diameters in predicting pulmonary hypertension. Invest Radiol 1984; 19: 16-22
  • 21 Mahammedi A, Oshmyansky A, Hassoun PM. et al. Pulmonary artery measurements in pulmonary hypertension: the role of computed tomography. J Thorac Imaging 2013; 28: 96-103
  • 22 McCall RK, Ravenel JG, Nietert PJ. et al. Relationship of main pulmonary artery diameter to pulmonary arterial pressure in scleroderma patients with and without interstitial fibrosis. J Comput Assist Tomogr 2014; 38: 163-168
  • 23 Spruijt OA, Bogaard H-J, Heijmans MW. et al. Predicting pulmonary hypertension with standard computed tomography pulmonary angiography. Int J Cardiovasc Imaging 2015; 31: 871-879
  • 24 Swift AJ, Dwivedi K, Johns C. et al. Diagnostic accuracy of CT pulmonary angiography in suspected pulmonary hypertension. Eur Radiol 2020; 30: 4918-4929
  • 25 Tonelli AR, Arelli V, Minai OA. et al. Causes and circumstances of death in pulmonary arterial hypertension. Am J Respir Crit Care Med 2013; 188: 365-369
  • 26 Frazier AA, Burke AP. The imaging of pulmonary hypertension. Semin Ultrasound CT MR 2012; 33: 535-551
  • 27 Truong QA, Massaro JM, Rogers IS. et al. Reference values for normal pulmonary artery dimensions by noncontrast cardiac computed tomography: the Framingham Heart Study. Circ Cardiovasc Imaging 2012; 5: 147-154
  • 28 Peña E, Dennie C, Veinot J, Muñiz SH. Pulmonary hypertension: how the radiologist can help. Radiographics 2012; 32: 9-32
  • 29 Dornia C, Lange TJ, Behrens G. et al. Multidetector computed tomography for detection and characterization of pulmonary hypertension in consideration of WHO classification. J Comput Assist Tomogr 2012; 36: 175-180
  • 30 Lange TJ, Dornia C, Stiefel J. et al. Increased pulmonary artery diameter on chest computed tomography can predict borderline pulmonary hypertension. Pulm Circ 2013; 3: 363-368
  • 31 Shimizu K, Tsujino I, Sato T. et al. Performance of computed tomography-derived pulmonary vasculature metrics in the diagnosis and haemodynamic assessment of pulmonary arterial hypertension. Eur J Radiol 2017; 96: 31-38
  • 32 Lee SH, Kim YJ, Lee HJ. et al. Comparison of CT-Determined Pulmonary Artery Diameter, Aortic Diameter, and Their Ratio in Healthy and Diverse Clinical Conditions. PLoS One 2015; 10: e0126646
  • 33 Truong QA, Bhatia HS, Szymonifka J. et al. A four-tier classification system of pulmonary artery metrics on computed tomography for the diagnosis and prognosis of pulmonary hypertension. J Cardiovasc Comput Tomogr 2018; 12: 60-66
  • 34 Puchalski MD, Williams R v Askovich B. et al. Assessment of right ventricular size and function: echo versus magnetic resonance imaging. Congenit Heart Dis 2007; 2: 27-31
  • 35 Swift AJ, Rajaram S, Condliffe R. et al. Diagnostic accuracy of cardiovascular magnetic resonance imaging of right ventricular morphology and function in the assessment of suspected pulmonary hypertension results from the ASPIRE registry. J Cardiovasc Magn Reson 2012; 14: 40
  • 36 Swift AJ, Rajaram S, Marshall H. et al. Black blood MRI has diagnostic and prognostic value in the assessment of patients with pulmonary hypertension. Eur Radiol 2012; 22: 695-702
  • 37 Rajaram S, Swift AJ, Capener D. et al. Comparison of the diagnostic utility of cardiac magnetic resonance imaging, computed tomography, and echocardiography in assessment of suspected pulmonary arterial hypertension in patients with connective tissue disease. J Rheumatol 2012; 39: 1265-1274
  • 38 Swift AJ, Lu H, Uthoff J. et al. A machine learning cardiac magnetic resonance approach to extract disease features and automate pulmonary arterial hypertension diagnosis. Eur Heart J Cardiovasc Imaging 2021; 22: 236-245
  • 39 Kroeger JR, Stackl M, Weiss K. et al. k–t accelerated multi-VENC 4D flow MRI improves vortex assessment in pulmonary hypertension. Eur J Radiol 2021; 145: 110035
  • 40 Reiter G, Reiter U, Kovacs G. et al. Blood Flow Vortices along the Main Pulmonary Artery Measured with MR Imaging for Diagnosis of Pulmonary Hypertension. Radiology 2014; 275: 71-79
  • 41 Grüning T, Drake BE, Farrell SL, Nokes T. Three-year clinical experience with VQ SPECT for diagnosing pulmonary embolism: diagnostic performance. Clin Imaging 2014; 38: 831-835
  • 42 Roach PJ, Schembri GP, Bailey DL. V/Q scanning using SPECT and SPECT/CT. J Nucl Med 2013; 54: 1588-1596
  • 43 He J, Fang W, Lv B. et al. Diagnosis of chronic thromboembolic pulmonary hypertension: comparison of ventilation/perfusion scanning and multidetector computed tomography pulmonary angiography with pulmonary angiography. Nucl Med Commun 2012; 33: 459-463
  • 44 Tunariu N, Gibbs SJR, Win Z. et al. Ventilation-perfusion scintigraphy is more sensitive than multidetector CTPA in detecting chronic thromboembolic pulmonary disease as a treatable cause of pulmonary hypertension. J Nucl Med 2007; 48: 680-684
  • 45 Coulden R. State-of-the-art imaging techniques in chronic thromboembolic pulmonary hypertension. Proc Am Thorac Soc 2006; 3: 577-583
  • 46 Giordano J, Khung S, Duhamel A. et al. Lung perfusion characteristics in pulmonary arterial hypertension (PAH) and peripheral forms of chronic thromboembolic pulmonary hypertension (pCTEPH): Dual-energy CT experience in 31 patients. Eur Radiol 2017; 27: 1631-1639
  • 47 Rush C, Langleben D, Schlesinger RD. et al. Lung scintigraphy in pulmonary capillary hemangiomatosis: a rare disorder causing primary pulmonary hypertension. Clin Nucl Med 1991; 16: 913-917
  • 48 Fishman AJ, Moser KM, Fedullo PF. Perfusion lung scans vs. pulmonary angiography in evaluation of suspected primary pulmonary hypertension. Chest 1983; 84: 679-683
  • 49 Ryan KL, Fedullo PF, Davis GB. et al. Perfusion scan findings understate the severity of angiographic and hemodynamic compromise in chronic thromboembolic pulmonary hypertension. Chest 1988; 93: 1180-1185
  • 50 Jenkins D, Mayer E, Screaton N, Madani M. State-of-the-art chronic thromboembolic pulmonary hypertension diagnosis and management. Eur Respir Rev 2012; 21: 32-39
  • 51 Resten A, Maitre S, Humbert M. et al. Pulmonary hypertension: CT of the chest in pulmonary venoocclusive disease. AJR Am J Roentgenol 2004; 183: 65-70
  • 52 Kadowaki T, Yano S, Kobayashi K. et al. Pulmonary capillary hemangiomatosis-like foci detected by high resolution computed tomography. Intern Med 2010; 49: 175-178
  • 53 Pérez Núñez M, Alonso Charterina S, Pérez-Olivares C. et al. Radiological Findings in Multidetector Computed Tomography (MDCT) of Hereditary and Sporadic Pulmonary Veno-Occlusive Disease: Certainties and Uncertainties. Diagnostics (Basel) 2021; 11: 141
  • 54 Kasai H, Tanabe N, Fujimoto K. et al. Mosaic attenuation pattern in non-contrast computed tomography for the assessment of pulmonary perfusion in chronic thromboembolic pulmonary hypertension. Respir Investig 2017; 55: 300-307
  • 55 Ruggiero A, Screaton NJ. Imaging of acute and chronic thromboembolic disease: state of the art. Clin Radiol 2017; 72: 375-388
  • 56 Suntharalingam S, Mikat C, Stenzel E. et al. Submillisievert standard-pitch CT pulmonary angiography with ultra-low dose contrast media administration: A comparison to standard CT imaging. PLoS One 2017; 12: e0186694
  • 57 Dong C, Zhou M, Liu D. et al. Diagnostic accuracy of computed tomography for chronic thromboembolic pulmonary hypertension: a systematic review and meta-analysis. PLoS One 2015; 10: e0126985
  • 58 Lambert L, Michalek P, Burgetova A. The diagnostic performance of CT pulmonary angiography in the detection of chronic thromboembolic pulmonary hypertension – systematic review and meta-analysis. Eur Radiol 2022; 32: 7927-7935
  • 59 Boon GJAM, Jairam PM, Groot GMC. et al. Identification of chronic thromboembolic pulmonary hypertension on CTPAs performed for diagnosing acute pulmonary embolism depending on level of expertise. Eur J Intern Med 2021; 93: 64-70
  • 60 Rogberg AN, Gopalan D, Westerlund E, Lindholm P. Do radiologists detect chronic thromboembolic disease on computed tomography?. Acta Radiol 2019; 60: 1576-1583
  • 61 Kharat A, Hachulla A-L, Noble S, Lador F. Modern diagnosis of chronic thromboembolic pulmonary hypertension. Thromb Res 2018; 163: 260-265
  • 62 Ende-Verhaar YM, Meijboom LJ, Kroft LJM. et al. Usefulness of standard computed tomography pulmonary angiography performed for acute pulmonary embolism for identification of chronic thromboembolic pulmonary hypertension: results of the InShape III study. J Heart Lung Transplant 2019; 38: 731-738
  • 63 Kim NH, Delcroix M, Jais X. et al. Chronic thromboembolic pulmonary hypertension. Eur Respir J 2019; 53: 1801915
  • 64 Kawakami T, Ogawa A, Miyaji K. et al. Novel Angiographic Classification of Each Vascular Lesion in Chronic Thromboembolic Pulmonary Hypertension Based on Selective Angiogram and Results of Balloon Pulmonary Angioplasty. Circ Cardiovasc Interv 2016; 9: e003318
  • 65 Gopalan D, Delcroix M, Held M. Diagnosis of chronic thromboembolic pulmonary hypertension. Eur Respir Rev 2017; 26: 160108
  • 66 Große Hokamp N, Maintz D, Shapira N. et al. Technical background of a novel detector-based approach to dual-energy computed tomography. Diagn Interv Radiol 2020; 26: 68-71
  • 67 Thieme SF, Johnson TRC, Lee C. et al. Dual-energy CT for the assessment of contrast material distribution in the pulmonary parenchyma. AJR Am J Roentgenol 2009; 193: 144-149
  • 68 Thieme SF, Becker CR, Hacker M. et al. Dual energy CT for the assessment of lung perfusion-correlation to scintigraphy. Eur J Radiol 2008; 68: 369-374
  • 69 Fuld MK, Halaweish AF, Haynes SE. et al. Pulmonary perfused blood volume with dual-energy CT as surrogate for pulmonary perfusion assessed with dynamic multidetector CT. Radiology 2013; 267: 747-756
  • 70 Tamura M, Yamada Y, Kawakami T. et al. Diagnostic accuracy of lung subtraction iodine mapping CT for the evaluation of pulmonary perfusion in patients with chronic thromboembolic pulmonary hypertension: Correlation with perfusion SPECT/CT. Int J Cardiol 2017; 243: 538-543
  • 71 Masy M, Giordano J, Petyt G. et al. Dual-energy CT (DECT) lung perfusion in pulmonary hypertension: concordance rate with V/Q scintigraphy in diagnosing chronic thromboembolic pulmonary hypertension (CTEPH). Eur Radiol 2018; 28: 5100-5110
  • 72 Kroeger JR, Zöllner J, Gerhardt F. et al. Detection of patients with chronic thromboembolic pulmonary hypertension by volumetric iodine quantification in the lung–a case control study. Quant Imaging Med Surg 2021; 12: 1121-1129
  • 73 Gertz RJ, Gerhardt F, Kröger JR. et al. Spectral Detector CT-Derived Pulmonary Perfusion Maps and Pulmonary Parenchyma Characteristics for the Semiautomated Classification of Pulmonary Hypertension. Front Cardiovasc Med 2022; 9: 835732
  • 74 Koike H, Sueyoshi E, Sakamoto I. et al. Quantification of lung perfusion blood volume (lung PBV) by dual-energy CT in patients with chronic thromboembolic pulmonary hypertension (CTEPH) before and after balloon pulmonary angioplasty (BPA): Preliminary results. Eur J Radiol 2016; 85: 1607-1612
  • 75 Koike H, Sueyoshi E, Sakamoto I. et al. Comparative clinical and predictive value of lung perfusion blood volume CT, lung perfusion SPECT and catheter pulmonary angiography images in patients with chronic thromboembolic pulmonary hypertension before and after balloon pulmonary angioplasty. Eur Radiol 2018; 28: 5091-5099
  • 76 Ley S, Ley-Zaporozhan J, Pitton MB. et al. Diagnostic performance of state-of-the-art imaging techniques for morphological assessment of vascular abnormalities in patients with chronic thromboembolic pulmonary hypertension (CTEPH). Eur Radiol 2012; 22: 607-616
  • 77 Hinrichs JB, Marquardt S, von Falck C. et al. Comparison of C-arm Computed Tomography and Digital Subtraction Angiography in Patients with Chronic Thromboembolic Pulmonary Hypertension. Cardiovasc Intervent Radiol 2016; 39: 53-63
  • 78 Lewis RA, Johns CS, Cogliano M. et al. Identification of Cardiac Magnetic Resonance Imaging Thresholds for Risk Stratification in Pulmonary Arterial Hypertension. Am J Respir Crit Care Med 2020; 201: 458-468
  • 79 Alabed S, Shahin Y, Garg P. et al. Cardiac-MRI Predicts Clinical Worsening and Mortality in Pulmonary Arterial Hypertension: A Systematic Review and Meta-Analysis. JACC Cardiovasc Imaging 2021; 14: 931-942
  • 80 Humbert M, Farber HW, Ghofrani H-A. et al. Risk assessment in pulmonary arterial hypertension and chronic thromboembolic pulmonary hypertension. Eur Respir J 2019; 53: 1802004
  • 81 Huis In ʼt Veld AE, van de Veerdonk MC, Spruijt O. et al. EXPRESS: Preserving right ventricular function in patients with pulmonary arterial hypertension: single centre experience with a cardiac magnetic resonance imaging-guided treatment strategy. Pulm Circ 2019;
  • 82 van de Veerdonk MC, Huis In T Veld AE, Marcus JT. et al. Upfront combination therapy reduces right ventricular volumes in pulmonary arterial hypertension. Eur Respir J 2017; 49: 1700007
  • 83 de Siqueira MEM, Pozo E, Fernandes VR. et al. Characterization and clinical significance of right ventricular mechanics in pulmonary hypertension evaluated with cardiovascular magnetic resonance feature tracking. J Cardiovasc Magn Reson 2016; 18: 39