Synthesis 2024; 56(15): 2339-2346
DOI: 10.1055/a-2284-9845
paper

Photoredox-Catalyzed Oxidative C–H Alkylation of Glycine Derivatives with 4-Alkyl-1,4-dihydropyridines

Madala Hari Babu
a   College of Pharmacy, Kyung Hee University, Seoul 02447, Republic of Korea
,
Eunbin Jang
b   College of Pharmacy, Chungnam National University, Daejeon 34134, Republic of Korea
,
Hyesu Jang
b   College of Pharmacy, Chungnam National University, Daejeon 34134, Republic of Korea
,
Sang Kyum Kim
b   College of Pharmacy, Chungnam National University, Daejeon 34134, Republic of Korea
,
Jaehoon Sim
a   College of Pharmacy, Kyung Hee University, Seoul 02447, Republic of Korea
c   Department of Regulatory Science, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea
d   Institute of Regulatory Innovation through Science, Kyung Hee University, Seoul 02447, Republic of Korea
› Author Affiliations
This work was supported by a National Research Foundation of Korea (NRF) grant funded by the Korean government (MSIT) (No. 2021R1C1C1010044) and a grant from the National Institute of Food and Drug Safety Evaluation in 2023 (21153MFDS601).


Abstract

Oxidative α-C(sp3)–H alkylation of N-arylated glycine derivatives with 4-alkyldihydropyridine derivatives (alkyl-DHPs) as versatile alkyl radical precursors has been developed. Utilizing visible-light-driven photoredox catalysis and ammonium persulfate as an oxidizing agent, this methodology facilitates the site-selective alkylation of glycine derivatives, enabling the site-selective alkylation of peptides. The reaction exhibits broad substrate scope, including various alkyl radicals and acid-labile functional groups. This approach expands the synthetic toolbox in peptide chemistry, offering a mild and efficient method for the synthesis of modified peptides.

Supporting Information



Publication History

Received: 14 February 2024

Accepted after revision: 11 March 2024

Accepted Manuscript online:
11 March 2024

Article published online:
02 April 2024

© 2024. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

    • 2a Zorzi A, Deyle K, Heinis C. Curr. Opin. Chem. Biol. 2017; 38: 24
    • 2b Fosgerau K, Hoffmann T. Drug Discovery Today 2015; 20: 122
    • 2c Henninot A, Collins JC, Nuss JM. J. Med. Chem. 2018; 61: 1382
    • 3a Vinogradov AA, Yin Y, Suga H. J. Am. Chem. Soc. 2019; 141: 4167
    • 3b Otvos L, Wade JD. Front. Chem. 2014; 2: 8
    • 4a Walsh CT, Garneau-Tsodikova S, Gatto GJ. Angew. Chem. Int. Ed. 2005; 44: 7342
    • 4b Zhang C, Vinogradova EV, Spokoyny AM, Buchwald SL, Pentelute BL. Angew. Chem. Int. Ed. 2019; 58: 4810
    • 4c Salwiczek M, Nyakatura EK, Gerling UI. M, Ye S, Koksch B. Chem. Soc. Rev. 2012; 41: 2135
    • 4d Guillen Schlippe YV, Hartman MC. T, Josephson K, Szostak JW. J. Am. Chem. Soc. 2012; 134: 10469
    • 4e Krall N, da Cruz FP, Boutureira O, Bernardes GJ. L. Nat. Chem. 2016; 8: 103
    • 4f Adhikari A, Bhattarai BR, Aryal A, Thapa N, Kc P, Adhikari A, Maharjan S, Chanda PB, Regmi BP, Parajuli N. RSC Adv. 2021; 11: 38126
    • 5a Sletten EM, Bertozzi CR. Angew. Chem. Int. Ed. 2009; 48: 6974
    • 5b DeGruyter JN, Malins LR, Baran PS. Biochemistry 2017; 56: 3863
    • 6a Song Y, Zhang Z, Cao Y, Yu Z. ChemBioChem 2023; 24: e202200497
    • 6b Inokuma T. Chem. Pharm. Bull. 2021; 69: 303
    • 6c Tailhades J. Int. J. Pept. Res. Ther. 2022; 28: 1
    • 6d Yuan Z, Liu X, Liu C, Zhang Y, Rao Y. Molecules 2020; 25: 5270
    • 6e Boto A, González CC, Hernández D, Romero-Estudillo I, Saavedra CJ. Org. Chem. Front. 2021; 8: 6720
    • 6f Kordbacheh S, Kasko AM. Polym. Int. 2021; 70: 889
    • 6g Roche SP. Synthesis 2021; 53: 2767
    • 7a Chalker JM, Bernardes GJ. L, Lin YA, Davis BG. Chem. Asian J. 2009; 4: 630
    • 7b Gunnoo SB, Madder A. ChemBioChem 2016; 17: 529
    • 7c Vara BA, Li X, Berritt S, Walters CR, Petersson EJ, Molander GA. Chem. Sci. 2018; 9: 336
    • 7d Dhanjee HH, Saebi A, Buslov I, Loftis AR, Buchwald SL, Pentelute BL. J. Am. Chem. Soc. 2020; 142: 9124
    • 7e Bondalapati S, Jbara M, Brik A. Nat. Chem. 2016; 8: 407
    • 7f King TA, Kandemir JM, Walsh SJ, Spring DR. Chem. Soc. Rev. 2021; 50: 39
    • 7g Vantourout JC, Adusumalli SR, Knouse KW, Flood DT, Ramirez A, Padial NM, Istrate A, Maziarz K, Degruyter JN, Merchant RR, Qiao JX, Schmidt MA, Deery MJ, Eastgate MD, Dawson PE, Bernardes GJ. L, Baran PS. J. Am. Chem. Soc. 2020; 142: 17236
    • 7h Yamada H, Imoto T, Fujita K, Okazaki K, Motomura M. Biochemistry 1981; 20: 4836
    • 7i Rawale DG, Thakur K, Sreekumar P, Sajeev TK, Ramesh A, Adusumalli SR, Mishra RK, Rai V. Chem. Sci. 2021; 12: 6732
    • 7j Dardir AH, Hazari N, Miller SJ, Shugrue CR. Org. Lett. 2019; 21: 5762
    • 7k Meena R, Shekhar S, Ansari SB, Tiwari A, Lal J, Reddy DN. Chem. Asian J. 2023; 18: e202300638
    • 7l Watanabe S, Wada Y, Kawano M, Higashibayashi S, Sugai T, Hanaya K. Chem. Commun. 2023; 13026
    • 7m Tower SJ, Hetcher WJ, Myers TE, Kuehl NJ, Taylor MT. J. Am. Chem. Soc. 2020; 142: 9112
    • 7n Seki Y, Ishiyama T, Sasaki D, Abe J, Sohma Y, Oisaki K, Kanai M. J. Am. Chem. Soc. 2016; 138: 10798
    • 7o Lee JC, Cuthbertson JD, Mitchell NJ. Org. Lett. 2023; 25: 5459
    • 7p Boutureira O, Bernardes GJ. L. Chem. Rev. 2015; 115: 2174
    • 7q Roch AL, Hébert M, Gagnon A. Eur. J. Org. Chem. 2020; 5363
    • 7r Zhang S, De Leon Rodriguez LM, Li FF, Brimble MA. Chem. Sci. 2023; 14: 7782
    • 8a Zhao P, Huang D, Wang F, Han T, Yang M, Wang KH, Hu Y. Appl. Organomet. Chem. 2022; 36: e6479
    • 8b Li S, Yang X, Wang Y, Zhou H, Zhang B, Huang G, Zhang Y, Li Y. Adv. Synth. Catal. 2018; 360: 4452
    • 8c Schörgenhumer J, Chowdhury R, Waser M. Chem. Data Collect. 2017; 11–12: 36
    • 8d Wang GZ, Liu DG, Liu MT, Fu Y. Green Chem. 2021; 23: 5082
    • 8e Ke M, Liu Z, Huang G, Huang G, Wang J, Tao Y, Chen F. Org. Lett. 2020; 22: 4135
    • 8f Wei XH, Li ZH, Zhao LB, Zhang P, Zhou HC, Wang YB. RSC Adv. 2019; 9: 32081
    • 9a Madala HB, Sim J. Eur. J. Org. Chem. 2022; e202200859
    • 9b Wang C, Qi R, Wang R, Xu Z. Acc. Chem. Res. 2023; 56: 2110
    • 9c Wei WT, Song RJ, Li JH. Adv. Synth. Catal. 2014; 356: 1703
    • 9d Li K, Wu Q, Lan J, You J. Nat. Commun. 2015; 6: 8404
    • 9e Segundo MS, Guerrero I, Correa A. Org. Lett. 2017; 19: 5288
    • 9f Yang X, Xie Z, Li Y, Zhang Y. Chem. Sci. 2020; 11: 4741
    • 9g Tian H, Xu W, Liu Y, Wang Q. Org. Lett. 2020; 22: 5005
    • 9h Segundo MS, Correa A. Adv. Synth. Catal. 2022; 364: 3161
    • 9i Xiang H, Ye Y. ACS Catal. 2024; 14: 522
    • 10a Segundo MS, Correa A. ChemSusChem 2018; 11: 3893
    • 10b Peng H, Yu JT, Jiang Y, Yang H, Cheng J. J. Org. Chem. 2014; 79: 9847
    • 10c Song Y, Zhang H, Guo J, Shao Y, Ding Y, Zhu L, Yao X. Eur. J. Org. Chem. 2021; 5914
    • 10d Wang J, Ye Y, Sang T, Zhou C, Bao X, Yuan Y, Huo C. Org. Lett. 2022; 24: 7577
    • 11a Wang J, Su Y, Quan Z, Li J, Yang J, Yuan Y, Huo C. Chem. Commun. 2021; 57: 1959
    • 11b Yang L, Qiu Z, Wu J, Zhao J, Shen T, Huang X, Liu ZQ. Org. Lett. 2021; 23: 3207
    • 11c Madala HB, Jang H, Han M, Kim SK, Sim J. Eur. J. Org. Chem. 2022; e202201259
    • 13a Shen GB, Xie L, Wang YX, Gong TY, Wang BY, Hu YH, Fu YH, Yan M. ACS Omega 2021; 6: 23621
    • 13b Ye S, Wu J. Acta Chim. Sin. 2019; 77: 814
    • 13c Song ZY, Zhang CL, Ye S. Org. Biomol. Chem. 2019; 17: 181
    • 13d Wang PZ, Chen JR, Xiao WJ. Org. Biomol. Chem. 2019; 17: 6936
    • 13e Shen GB, Xie L, Yu HY, Liu J, Fu YH, Yan M. RSC Adv. 2020; 10: 31425
    • 13f Huang W, Cheng X. Synlett 2017; 28: 148
  • 14 Cardinale L, Schmotz MO. W. S, Konev MO, von Wangelin AJ. Org. Lett. 2022; 24: 506
  • 15 Xue H, Guo M, Wang C, Shen Y, Qi R, Wu Y, Xu Z, Chang M. Org. Chem. Front. 2020; 7: 2426
  • 16 Garza-Sanchez RA, Tlahuext-Aca A, Tavakoli G, Glorius F. ACS Catal. 2017; 7: 4057