RSS-Feed abonnieren
DOI: 10.1055/a-2287-0003
Robotik und Navigation in der Hüftendoprothetik
Aktuelle Roboter- und Navigationssysteme – klinische Relevanz und EvidenzWeshalb werden Roboter- und Navigationssysteme in der Hüftchirurgie benötigt? Welche Roboter- und Navigationssysteme sind aktuell für die Hüftendoprothetik verfügbar? Wie unterscheiden sich diese Systeme? Welche Evidenz gibt es bereits für die Verwendung dieser Systeme? Diese Fragen sollen im Folgenden beantwortet werden.
-
Robotersysteme werden hinsichtlich Autonomiegrad (aktiv versus semiaktiv versus passiv) und der notwendigen Bildquelle (bildgestützt versus bildlos) unterschieden.
-
Seit 10 Jahren wächst der Anteil der Roboterendoprothetik zunehmend.
-
RA-THA (roboterassistierte Hüftgelenkendoprothetik) ist meist mit einer kurzen Lernkurve von 13–19 Fällen verbunden.
-
RA-THA kann schon gegenwärtig ökonomisch sinnvoll sein und wird effizienter.
-
RA-THA kann die Pfannenposition sicher planen und realisieren, auch unter Berücksichtigung der funktionellen Beckenkippung.
-
NTHA (navigierte Hüftgelenkendoprothetik) erreicht eine verbesserte Positionierung der Pfanne gegenüber herkömmlichen Implantationsmethoden unter klinisch vergleichbaren Ergebnissen und Komplikationsraten.
-
NTHA verlängert die Operationszeit und geht mit hohen System- und Einwegmaterialkosten einher.
Publikationsverlauf
Artikel online veröffentlicht:
29. September 2024
© 2024. Thieme. All rights reserved.
Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany
-
Literatur
- 1 EPRD Endoprothesenregister Deutschland. EPRD Jahresbericht 2021. Zugriff am 20. Februar 2024 unter: https://www.eprd.de/fileadmin/user_upload/Dateien/Publikationen/Berichte/Jahresbericht2021_2021–10–25_F.pdf
- 2 Grimberg A, Jansson V. EPRD-Jahresbericht 2020. Zugriff am 20. Februar 2024 unter: https://www.eprd.de/fileadmin/user_upload/Dateien/Publikationen/Berichte/Jahresbericht2020-Web_2020–12–11_F.pdf
- 3 Beckmann J, Stengel D, Tingart M. et al. Navigated cup implantation in hip arthroplasty: a meta-analysis. Acta Orthop 2009; 80: 538-544 DOI: 10.3109/17453670903350073.
- 4 Kirchner GJ, Lieber AM, Haislup B. et al. The cost of robot-assisted total hip arthroplasty: comparing safety and hospital charges to conventional total hip arthroplasty. J Am Acad Orthop Surg 2021; 29: 609-619 DOI: 10.5435/JAAOS-D-20-00715. (PMID: 32991384)
- 5 Fontalis A, Kayani B, Thompson JW. et al. Robotic total hip arthroplasty: past, present and future. Orthop Trauma 2022; 36: 6-13 DOI: 10.1016/j.mporth.2021.11.002.
- 6 Zhongming C, Bonutti P, Barsoum W. Technology review: CT scan-guided, 3-dimensional, robotic-arm assisted lower extremity arthroplasty. Surg Technol Int 2022; 40: 297-308 DOI: 10.52198/22.STI.40.OS1540.
- 7 Li Y, Wang XG, Dong ZY. et al. [Effect of the acetabular cup positioning and leg length restoration after total hip arthroplasty using robotic-assisted surgery system]. Zhonghua Yi Xue Za Zhi 2022; 102: 43-48 DOI: 10.3760/cma.j.cn112137-20210716-01594. (PMID: 34991236)
- 8 Kamath AF, Durbhakula SM, Pickering T. et al. Improved accuracy and fewer outliers with a novel CT-free robotic THA system in matched-pair analysis with manual THA. J Robot Surg 2022; 16: 905-913 DOI: 10.1007/s11701-021-01315-3.
- 9 Shaw JH, Rahman TM, Wesemann LD. et al. Comparison of postoperative instability and acetabular cup positioning in robotic-assisted versus traditional total hip arthroplasty. J Arthroplasty 2022; 37: S881-S889 DOI: 10.1016/j.arth.2022.02.002. (PMID: 35143923)
- 10 Redmond J, Gupta A, Hammarstedt J. The learning curve associated with robotic-assisted total hip arthroplasty. J Arthroplasty 2015; 30: 50-54 DOI: 10.1016/j.arth.2014.08.003. (PMID: 25262438)
- 11 Jacob I, Benson J, Shanaghan K. et al. Acetabular positioning is more consistent with the use of a novel miniature computer-assisted device. Int Orthop 2020; 44: 429-435 DOI: 10.1007/s00264-020-04484-2.
- 12 Mihalič R, Zdovc J, Mohar J. et al. Electromagnetic navigation system for acetabular component placement in total hip arthroplasty is more precise and accurate than the freehand technique: a randomized, controlled trial with 84 patients. Acta Orthop 2020; 91: 675-681 DOI: 10.1080/17453674.2020.1783073.
- 13 Ogilvie A, Kim WJ, Asirvatham RD. et al. Robotic-arm-assisted total hip arthroplasty: a review of the workflow, outcomes and its role in addressing the challenge of spinopelvic imbalance. Medicina (Kaunas) 2022; 58: 1616 DOI: 10.3390/medicina58111616. (PMID: 36363573)
- 14 Tamaki Y, Goto T, Wada K. et al. Robotic arm-assisted total hip arthroplasty via a minimally invasive anterolateral approach in the supine position improves the precision of cup placement in patients with developmental dysplasia of the hip. J Orthop Sci 2024; 29: 559-565 DOI: 10.1016/j.jos.2023.01.012. (PMID: 36801090)
- 15 Mettler FA, Bhargavan M, Faulkner K. et al. Radiologic and nuclear medicine studies in the United States and worldwide: frequency, radiation dose, and comparison with other radiation sources — 1950–2007. Radiology 2009; 253: 520-531 DOI: 10.1148/radiol.2532082010.
- 16 Kayani B, Konan S, Haddad FS. et al. The learning curve of robotic-arm assisted acetabular cup positioning during total hip arthroplasty 2021. Hip Int 2021; 31: 311-319 DOI: 10.1177/1120700019889334. (PMID: 31838874)
- 17 Lass R, Olischar B, Kubista B. et al. Total hip arthroplasty using imageless computer-assisted navigation—2-year follow-up of a prospective randomized study. J Clin Med 2020; 9: 1620 DOI: 10.3390/jcm9061620. (PMID: 32471214)
- 18 Maldonado D, Go C, Kyin C. Robotic Arm-assisted Total Hip Arthroplasty is More Cost-Effective Than Manual Total Hip Arthroplasty: A Markov Model Analysis. J Am Acad Orthop Surg 2021; 29: e168-e177 DOI: 10.5435/JAAOS-D-20-00498. (PMID: 32694323)
- 19 Migliorini F, Cuozzo F, Oliva F. et al. Imageless navigation for primary total hip arthroplasty: a meta-analysis study. J Orthop Traumatol 2022; 23: 21 DOI: 10.1186/s10195-022-00636-9. (PMID: 35426527)
- 20 Jayaram R, Gillinov S, Caruana D. Total hip arthroplasty imageless navigation does not reduce 90-day adverse events or five-year revisions in a large national cohort. J Arthroplasty 2023; 38: 862-867 DOI: 10.1016/j.arth.2022.12.012.
- 21 Constantinescu D, Costello II, Yakkanti R. Varying complication rates and increased costs in technology-assisted total hip arthroplasty versus conventional instrumentation in 1,372,300 primary total hips. J Arthroplasty 2024; 39: 1771-1776 DOI: 10.1016/j.arth.2023.12.019. (PMID: 38103802)
- 22 Sanchez-Sotelo J, Haidukewych GJ, Boberg CJ. Hospital cost of dislocation after primary total hip arthroplasty. J Bone Joint Surg Am 2006; 88: 290-294 DOI: 10.2106/JBJS.D.02799. (PMID: 16452739)
- 23 Hamilton WG, Sershon RA, Gupta A. et al. Readmission rate and healthcare utilization outcomes of computer-assisted fluoroscopy-based hip navigation versus manual total hip arthroplasty. Expert Rev Med Devices 2023; 20: 779-789 DOI: 10.1080/17434440.2023.2238609. (PMID: 37466357)
- 24 Dai HY, Zhu KC, Wang QJ. et al. Learning curve and short-term clinical outcomes of Mako robotic-assisted direct anterior approach total hip arthroplasty. Zhonghua Yi Xue Za Zhi 2022; 102: 49-55 DOI: 10.3760/cma.j.cn112137-20210806-01754. (PMID: 34991237)
- 25 Guo D, Li X, Ma S. et al. Total hip arthroplasty with robotic arm assistance for precise cup positioning: a case-control study. Orthop Surg 2022; 14: 1498-1505 DOI: 10.1111/os.13334.
- 26 Pizones J, García-Rey E. Pelvic motion the key to understanding spine–hip interaction. EFORT Open Rev 2020; 5: 522-533 DOI: 10.1302/2058-5241.5.200032. (PMID: 33072404)
- 27 Gupta A, Redmond J, Hammarstedt J. et al. Does robotic-assisted computer navigation affect acetabular cup positioning in total hip arthroplasty in the obese patient? A comparison study. J Arthroplasty 2015; 30: 2204-2207 DOI: 10.1016/j.arth.2015.06.062.
- 28 Hayashi S, Hashimoto S, Kuroda Y. et al. Robotic-arm assisted THA can achieve precise cup positioning in developmental dysplasia of the hip: a case control study. Bone Joint Res 2021; 10: 629-638 DOI: 10.1302/2046-3758.1010.BJR-2021-0095.R1. (PMID: 34592109)
- 29 Jacofsky D, Allen M. Robotics in arthroplasty: a comprehensive review. J Arthroplasty 2016; 31: 2353-2363 DOI: 10.1016/j.arth.2016.05.026. (PMID: 27325369)
- 30 Korber S, Antonios JK, Sivasundaram L. et al. Utilization of technology-assisted total hip arthroplasty in the United States from 2005 to 2018. Arthroplast Today 2021; 12: 36-44 DOI: 10.1016/j.artd.2021.08.020. (PMID: 34761092)
- 31 O’Connor PB, Thompson MT, Esposito CI. et al. The impact of functional combined anteversion on hip range of motion: a new optimal zone to reduce risk of impingement in total hip arthroplasty. Bone Jt Open 2021; 2: 834-841 DOI: 10.1302/2633-1462.210.BJO-2021-0117.R1. (PMID: 34633223)
- 32 Caldora P, D’Urso A, Banchetti R. et al. Blood transfusion, hospital stay and learning curve in robotic assisted total hip arthroplasty. J Biol Regul Homeost Agents 2020; 34: 37-49 (PMID: 33261255)
- 33 Louette S, Wignall A, Pandit H. Spinopelvic relationship and its impact on total hip arthroplasty. Arthroplast Today 2022; 17: 87-93 DOI: 10.1016/j.artd.2022.07.001. (PMID: 36042938)
- 34 Abdel MP, von Roth P, Jennings MT. et al. What safe zone? The vast majority of dislocated THAs are within the lewinnek safe zone for acetabular component position. Clin Orthop Relat Res 2016; 474: 386 DOI: 10.1007/s11999-015-4432-5.
- 35 Delaunay C, Hamadouche M, Girard J. et al. What are the causes for failures of primary hip arthroplasties in France?. Clin Orthop Relat Res 2013; 471: 3863 DOI: 10.1007/s11999-013-2935-5PubMed:.
- 36 Esposito CI, Gladnick BP, Lee Y. et al. Cup position alone does not predict risk of dislocation after hip arthroplasty. J Arthroplasty 2015; 30: 109-113 DOI: 10.1016/j.arth.2014.07.009.
- 37 Okamoto M, Kawasaki M, Okura T. et al. Comparison of accuracy of cup position using portable navigation versus alignment guide in total hip arthroplasty in supine position. Hip Int 2021; 31: 492-499 DOI: 10.1177/1120700020908788. (PMID: 32126836)
- 38 Naito Y, Hasegawa M, Tone S. et al. The accuracy of acetabular cup placement in primary total hip arthroplasty using an image-free navigation system. BMC Musculoskelet Disord 2021; 22: 1016 DOI: 10.1186/s12891-021-04902-5. (PMID: 34863119)
- 39 Tanino H, Nishida Y, Mitsutake R. et al. Portable accelerometer-based navigation system for cup placement of total hip arthroplasty: a prospective, randomized, controlled study. J Arthroplasty 2020; 35: 172-177 DOI: 10.1016/j.arth.2019.08.044. (PMID: 31563396)
- 40 Stefl M, Lundergan W, Heckmann N. et al. Spinopelvic mobility and acetabular component position for total hip arthroplasty. Bone Joint J 2017; 99-B: 37-45 DOI: 10.1302/0301-620X.99B1.BJJ-2016-0415.R1. (PMID: 28042117)
- 41 Kunze KN, Bovonratwet P, Polce EM. et al. Comparison of surgical time, short-term adverse events, and implant placement accuracy between manual, robotic-assisted, and computer-navigated total hip arthroplasty: a network meta-analysis of randomized controlled trials. J Am Acad Orthop Surg Glob Res Rev 2022; 6: e21.00200 DOI: 10.5435/JAAOSGlobal-D-21-00200. (PMID: 35472191)
- 42 Singh V, Realyvasquez J, Simcox T. Robotics versus navigation versus conventional total hip arthroplasty: does the use of technology yield superior outcomes?. J Arthroplasty 2021; 36: 2801-2807 DOI: 10.1016/j.arth.2021.02.074. (PMID: 33773864)
- 43 LaValva S, Chiu Y-F, Fowler M. et al. Robotics and navigation do not affect the risk of periprosthetic joint infection following primary total hip arthroplasty: a propensity score-matched cohort analysis. J Bone Joint Surg Am 2024; 106: 582-589 DOI: 10.2106/JBJS.23.00289. (PMID: 38324646)
- 44 Sai Sathikumar A, Jacob G, Thomas AB. et al. Acetabular cup positioning in primary routine total hip arthroplasty—a review of current concepts and technologies. Arthroplasty 2023; 5: 59 DOI: 10.1186/s42836-023-00213-3.
- 45 Wang R, Zheng X, Xu T. et al. Personalized cup positioning guides improved cup positioning and hip ranges of motion in robotic assisted total hip arthroplasty. Front Bioeng Biotechnol 2020; 8: 988 DOI: 10.3389/fbioe.2020.00988. (PMID: 32974316)