Rofo 2025; 197(01): 65-75
DOI: 10.1055/a-2290-4781
Technical Innovations

Value of vendor-agnostic deep learning image denoising in brain computed tomography: A multi-scanner study

Wertigkeit von Geräte-unabhängigem Deep-Learning Denoising in der Computertomographie: Eine Multiscanner-Studie
Christian Kapper
1   Department of Neuroradiology, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany (Ringgold ID: RIN39068)
,
Lukas Müller
2   Department of Diagnostic and Interventional Radiology, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany (Ringgold ID: RIN39068)
,
Andrea Kronfeld
1   Department of Neuroradiology, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany (Ringgold ID: RIN39068)
,
Mario Alberto Abello Mercado
1   Department of Neuroradiology, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany (Ringgold ID: RIN39068)
,
Sebastian Altmann
1   Department of Neuroradiology, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany (Ringgold ID: RIN39068)
,
Nils Grauhan
1   Department of Neuroradiology, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany (Ringgold ID: RIN39068)
,
Dirk Graafen
2   Department of Diagnostic and Interventional Radiology, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany (Ringgold ID: RIN39068)
,
Marc A. Brockmann
1   Department of Neuroradiology, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany (Ringgold ID: RIN39068)
,
Ahmed E. Othman
1   Department of Neuroradiology, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany (Ringgold ID: RIN39068)
› Author Affiliations

Abstract

Purpose

To evaluate the effect of a vendor-agnostic deep learning denoising (DLD) algorithm on diagnostic image quality of non-contrast cranial computed tomography (ncCT) across five CT scanners.

Materials and Methods

This retrospective single-center study included ncCT data of 150 consecutive patients (30 for each of the five scanners) who had undergone routine imaging after minor head trauma. The images were reconstructed using filtered back projection (FBP) and a vendor-agnostic DLD method. Using a 4-point Likert scale, three readers performed a subjective evaluation assessing the following quality criteria: overall diagnostic image quality, image noise, gray matter-white matter differentiation (GM-WM), artifacts, sharpness, and diagnostic confidence. Objective analysis included evaluation of noise, contrast-to-noise ratio (CNR), signal-to-noise ratio (SNR), and an artifact index for the posterior fossa.

Results

In subjective image quality assessment, DLD showed constantly superior results compared to FBP in all categories and for all scanners (p<0.05) across all readers. The objective image quality analysis showed significant improvement in noise, SNR, and CNR as well as for the artifact index using DLD for all scanners (p<0.001).

Conclusion

The vendor-agnostic deep learning denoising algorithm provided significantly superior results in the subjective as well as in the objective analysis of ncCT images of patients with minor head trauma concerning all parameters compared to the FBP reconstruction. This effect has been observed in all five included scanners.

Key Points

  • Significant improvement of image quality for 5 scanners due to the vendor-agnostic DLD

  • Subjects were patients with routine imaging after minor head trauma

  • Reduction of artifacts in the posterior fossa due to the DLD

  • Access to improved image quality even for older scanners from different vendors

Citation Format

  • Kapper C, Müller L, Kronfeld A et al. Value of vendor-agnostic deep learning image denoising in brain computed tomography: A multi-scanner study. Fortschr Röntgenstr 2024; DOI 10.1055/a-2290-4781

Zusammenfassung

Ziel

Auswertung der Wirkung eines herstellerunabhängigen Deep Learning Denoising-Algorithmus (DLD) auf die diagnostische Bildqualität kontrastloser kranialer Computertomografie (ncCT) für fünf CT-Scanner im Vergleich.

Material und Methoden

Diese retrospektive monozentrische Studie schloss ncCT-Daten von 150 konsekutiven Patienten (30 für jeden der fünf Scanner) ein, bei denen nach einem leichten Kopftrauma eine Routinebildgebung erfolgt war. Die Bilder wurden mittels gefilterter Rückprojektion (FBP) und einer herstellerunabhängigen DLD-Methode rekonstruiert. Anhand einer 4-Punkte-Likert-Skala führten drei Reader eine subjektive Bewertung durch, bei der die Qualitätskriterien allgemeine diagnostische Bildqualität, Bildrauschen, Differenzierung zwischen grauer und weißer Substanz (GM-WM), Artefakte, Bildschärfe und diagnostische Sicherheit bewertet wurden. Die objektive Analyse umfasste die Bewertung des Rauschens, des Kontrast-Rausch-Verhältnisses (CNR), des Signal-Rausch-Verhältnisses (SNR) und einen Artefaktindex für die Fossa cranii posterior.

Ergebnisse

Bei der subjektiven Auswertung der Bildqualität zeigte DLD im Vergleich zu FBP in allen Bewertungskategorien und für alle Scanner konstant bessere Ergebnisse (p<0,05) bei allen Readern. Die objektive Bildqualitätsanalyse zeigte bei allen Scannern eine signifikante Verbesserung des Rauschens, der SNR und der CNR sowie des Artefaktindexes durch das DLD (p<0,001).

Schlussfolgerung

Der herstellerunabhängige Deep Learning Denoising-Algorithmus lieferte im Vergleich zur FBP-Rekonstruktion bei allen Parametern sowohl in der subjektiven als auch in der objektiven Analyse deutlich bessere Ergebnisse für ncCT-Bilder von Patienten nach einem leichten Schädeltrauma. Dieser Effekt wurde bei allen fünf einbezogenen Scannern beobachtet.

Kernaussagen

  • Hochsignifikante Verbesserung der Bildqualität für alle 5 Scanner durch das herstellerunabhängige DLD

  • Eingeschlossen wurden Patienten mit Routinebildgebung nach leichtem Schädeltrauma

  • Verringerung von Artefakten in der hinteren Schädelgrube durch das DLD

  • Zugang zu verbesserter Bildqualität auch für ältere Geräte unterschiedlicher Hersteller möglich



Publication History

Received: 14 December 2023

Accepted after revision: 15 March 2024

Article published online:
15 May 2024

© 2024. Thieme. All rights reserved.

Georg Thieme Verlag KG
Oswald-Hesse-Straße 50, 70469 Stuttgart, Germany

 
  • References

  • 1 Neifert SN, Chapman EK, Martini ML. et al. Aneurysmal Subarachnoid Hemorrhage: the Last Decade. Transl Stroke Res 2021; 12 (03) 428-446
  • 2 Currie S, Saleem N, Straiton JA. et al. Imaging assessment of traumatic brain injury. Postgrad Med J 2016; 92: 41-50
  • 3 Alagic Z, Diaz Cardenas J, Halldorsson K. et al. Deep learning versus iterative image reconstruction algorithm for head CT in trauma. Emerg Radiol 2022; 29 (02) 339-352
  • 4 Schöckel L, Jost G, Seidensticker P. et al. Developments in X-Ray Contrast Media and the Potential Impact on Computed Tomography. Invest Radiol 2020; 55 (09) 592-597
  • 5 Dieckmeyer M, Sollmann N, Kupfer K. et al. Computed Tomography of the Head. Clin Neuroradiol 2023; 33: 591-610
  • 6 Bos D, Guberina N, Zensen S. et al. Radiation Exposure in Computed Tomography. Dtsch Arztebl Int 2023; 120 (09) 135-141
  • 7 Miglioretti DL, Johnson E, Williams A. et al. The Use of Computed Tomography in Pediatrics and the Associated Radiation Exposure and Estimated Cancer Risk. JAMA Pediatr 2013; 167 (08) 700-707
  • 8 Arndt C, Güttler F, Heinrich A. et al. Deep Learning CT Image Reconstruction in Clinical Practice. Fortschr Röntgenstr 2021; 193 (03) 252-261
  • 9 Kataria B, Nilsson Althén J, Smedby Ö. et al. Image Quality and Potential Dose Reduction using Advanced Modeled Iterative Reconstruction (ADMIRE) in Abdominal CT – A Review. Radiat Prot Dosimetry 2021; 195: 177-187
  • 10 Ahn C, Heo C, Kim JH. Combined low-dose simulation and deep learning for CT denoising: application in ultra-low-dose chest CT. Proc SPIE Int Soc Opt Eng 2019;
  • 11 Cho YJ, Schoepf UJ, Silverman JR. et al. Iterative Image Reconstruction Techniques: Cardiothoracic Computed Tomography Applications. J Thorac Imaging 2014; 29 (04) 198-208
  • 12 Bodelle B, Wichmann JL, Scholtz JE. et al. Iterative Reconstruction Leads to Increased Subjective and Objective Image Quality in Cranial CT in Patients With Stroke. AJR Am J Roentgenol 2015; 205 (03) 618-622
  • 13 Kim I, Kang H, Yoon HJ. et al. Deep learning–based image reconstruction for brain CT: improved image quality compared with adaptive statistical iterative reconstruction-Veo (ASIR-V). Neuroradiology 2021; 63 (06) 905-912
  • 14 Sun J, Li H, Wang B. et al. Application of a deep learning image reconstruction (DLIR) algorithm in head CT imaging for children to improve image quality and lesion detection. BMC Med Imaging 2021; 21 (01) 108
  • 15 Oostveen LJ, Meijer FJA, de Lange F. et al. Deep learning–based reconstruction may improve non-contrast cerebral CT imaging compared to other current reconstruction algorithms. Eur Radiol 2021; 31 (08) 5498-5506
  • 16 Park C, Choo KS, Jung Y. et al. CT iterative vs deep learning reconstruction: comparison of noise and sharpness. Eur Radiol 2021; 31 (05) 3156-3164
  • 17 Jiang B, Li N, Shi X. et al. Deep Learning Reconstruction Shows Better Lung Nodule Detection for Ultra-Low-Dose Chest CT. Radiology 2022; 303 (01) 202-212
  • 18 Choi H, Chang W, Kim JH. et al. Dose reduction potential of vendor-agnostic deep learning model in comparison with deep learning-based image reconstruction algorithm on CT: a phantom study. Eur Radiol 2022; 32 (02) 1247-1255
  • 19 Hong JH, Park EA, Lee W. et al. Incremental Image Noise Reduction in Coronary CT Angiography Using a Deep Learning-Based Technique with Iterative Reconstruction. Korean J Radiol 2020; 21 (10) 1165-1177
  • 20 Yeoh H, Hong SH, Ahn C. et al. Deep Learning Algorithm for Simultaneous Noise Reduction and Edge Sharpening in Low-Dose CT Images: A Pilot Study Using Lumbar Spine CT. Korean J Radiol 2021; 22 (11) 1850-1857
  • 21 Park S, Yoon JH, Joo I. et al. Image quality in liver CT: low-dose deep learning vs standard-dose model-based iterative reconstructions. Eur Radiol 2022; 32 (05) 2865-2874
  • 22 Lee S, Choi YH, Cho YJ. et al. Noise reduction approach in pediatric abdominal CT combining deep learning and dual-energy technique. Eur Radiol 2021; 31 (04) 2218-2226
  • 23 Kolb M, Storz C, Kim JH. et al. Effect of a novel denoising technique on image quality and diagnostic accuracy in low-dose CT in patients with suspected appendicitis. Eur J Radiol 2019; 116: 198-204
  • 24 FDA. Premarket Notification (device name ClariCT.AI): FDA. 2019 https://www.accessdata.fda.gov/cdrh_docs/pdf18/K183460.pdf
  • 25 Hsieh J, Liu E, Nett B. et al. A new era of image reconstruction: TrueFidelity™, Technical white paper on deep learning image reconstruction. 2019 https://www.gehealthcare.de/-/jssmedia/files/truefidelity/truefidelity-white-paper-jb68676xx-doc2287426.pdf?rev=-1
  • 26 Nam JG, Ahn C, Choi H. et al. Image quality of ultralow-dose chest CT using deep learning techniques: potential superiority of vendor-agnostic post-processing over vendor-specific techniques. Eur Radiol 2021; 31 (07) 5139-5147
  • 27 Anam C, Arif I, Haryanto F. et al. An Improved Method of Automated Noise Measurement System in CT Images. J Biomed Phys Eng 2021; 11 (02) 163-174
  • 28 Chun M, Choi YH, Kim JH. Automated measurement of CT noise in patient images with a novel structure coherence feature. Phys Med Biol 2015; 60 (23) 9107-9122
  • 29 Altmann S, Abello Mercado MA, Ucar FA. et al. Ultra-High-Resolution CT of the Head and Neck with Deep Learning Reconstruction; Assessment of Image Quality and Radiation Exposure and Intraindividual Comparison with Normal-Resolution CT. Diagnostics (Basel) 2023; 13 (09) 1534
  • 30 Dobbins 3rd JT, Samei E, Ranger NT. et al. Intercomparison of methods for image quality characterization. II. Noise power spectrum. Med Phys 2006; 33 (05) 1466-1475
  • 31 Shrimpton PC, Jansen JT, Harrison JD. Updated estimates of typical effective doses for common CT examinations in the UK following the 2011 national review. Br J Radiol 2016; 89 (1057) 20150346
  • 32 Wong KK, Cummock JS, He Y. et al. Retrospective study of deep learning to reduce noise in non-contrast head CT images. Comput Med Imaging Graph 2021; 94: 101996