Rofo 2025; 197(01): 76
DOI: 10.1055/a-2295-3839
Letter to the Editor

LLMs in radiology through prompt engineering: Comment

LLMs in der Radiologie durch Prompt Engineering: Kommentar
1   Private Academic Cosnsultant, Phonhong, Lao People's Democratic Republic
,
Viroj Wiwanitkit
2   Community Medicine, D Y Patil University, Navi Mumbai, India (Ringgold ID: RIN75138)
› Institutsangaben

Dear Editor, we would like to share ideas on the publication “Improving the use of LLMs in radiology through prompt engineering: from precision prompts to zero-shot learning [1].” The goal of the study is to apply GPT4 to adjust the LLM ChatGPT to new tasks without requiring further training. Various prompting techniques are explained, such as sophisticated in-context techniques and precision prompts. Additionally covered is the importance of embeddings as a data representation method.



Publikationsverlauf

Eingereicht: 04. März 2024

Angenommen: 26. März 2024

Artikel online veröffentlicht:
14. Mai 2024

© 2024. Thieme. All rights reserved.

Georg Thieme Verlag KG
Oswald-Hesse-Straße 50, 70469 Stuttgart, Germany

 
  • References

  • 1 Russe MF, Reisert M, Bamberg F. et al. Improving the use of LLMs in radiology through prompt engineering: from precision prompts to zero-shot learning. Fortschr Röntgenstr 2024;
  • 2 Kleebayoon A, Wiwanitkit V. Artificial Intelligence, Chatbots, Plagiarism and Basic Honesty: Comment. Cell Mol Bioeng 2023; 16 (02) 173-174