RSS-Feed abonnieren
DOI: 10.1055/a-2297-7364
Sleep Inertia als Herausforderung für die kommerzielle Luftfahrt
Sleep Inertia as a challenge in commercial aviationZUSAMMENFASSUNG
Neueste Entwicklungen in Technologie und Automatisierung lassen das kommerzielle Fliegen mit minimaler Besatzung, sog. extended Minimum Crew Operations (eMCOs), möglich erscheinen. In eMCOs hat während des Reiseflugs ein Pilot die Kontrolle (Pilot Flying), während der andere sich in einer Ruhephase befindet (Pilot Resting). In einem Notfall kann es passieren, dass der Pilot Resting aus dem Schlaf heraus die Kontrolle übernehmen muss. In diesem Fall steht er unter dem Einfluss von Sleep Inertia (zu Deutsch: Schlafträgheit), die das kognitive Leistungsvermögen stark beeinträchtigen kann. Es muss daher geprüft werden, inwiefern ein Pilot unter Sleep Inertia in der Lage ist, die an ihn gestellten Aufgaben sicher zu bearbeiten. In diesem Übersichtsartikel beleuchten wir Einflussfaktoren von Sleep Inertia; Herausforderungen, die Sleep Inertia an die Luftfahrt stellt; Studien zu kognitiven Leistungseinbußen durch Sleep Inertia bei Piloten; und potenzielle Gegenmaßnahmen.
ABSTRACT
In view of recent developments in technology and automation in commercial aviation, flights with reduced crews appear possible. In so-called extended Minimum-Crew Operations (eMCOs), one pilot has control over the aircraft (Pilot Flying) during cruise phase while the other pilot is allowed to rest (Pilot Resting). In eMCOs, sleep inertia – a state of cognitive impairment right after awakening – is a central safety hazard in case the eMCO segment is aborted and the Pilot Resting needs to assume control while still cognitively impaired by sleep inertia. In this review article, we discuss factors that influence sleep inertia; challenges that sleep inertia poses to aviation safety; studies on sleep inertia-induced cognitive impairments of pilots; and potential countermeasures.
Publikationsverlauf
Artikel online veröffentlicht:
29. Mai 2024
© 2024. Thieme. All rights reserved.
Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany
-
Literatur
- 1 Kolff M, Hofmann WF, Kerkhof GA. et al The time course of sleep inertia in a sematic priming paradigm. Sleep Hypn 2003; 05: 78-82
- 2 Jewett ME, Wyatt JK, Ritz-De Cecco A. et al Time course of sleep inertia dissipation in human performance and alertness. J Sleep Res 1999; 08: 1-8 DOI: 10.1111/j.1365-2869.1999.00128.x.
- 3 Scheer FAJL, Shea TJ, Hilton MF. et al An endogenous circadian rhythm in sleep inertia results in greatest cognitive impairment upon awakening during the biological night. J Biol Rhythms 2008; 23: 353-361 DOI: 10.1177/0748730408318081.
- 4 McHill AW, Hull JT, Cohen DA. et al Chronic sleep restriction greatly magnifies performance decrements immediately after awakening. Sleep 2019; 42: zsz032 DOI: 10.1093/sleep/zsz032.
- 5 Dinges DF, Orne MT, Orne EC. Assessing performance upon abrupt awakening from naps during quasi-continuous operations. Behavior Research Methods, Instruments & Computers 1985; 17: 37-45 DOI: 10.3758/BF03200895.
- 6 Brooks A, Lack L. A brief afternoon nap following nocturnal sleep restriction: which nap duration is most recuperative?. Sleep 2006; 29: 831-840 DOI: 10.1093/sleep/29.6.831.
- 7 Hilditch CJ, Centofanti SA, Dorrian J. et al A 30-Minute, but Not a 10-Minute Nighttime Nap is Associated with Sleep Inertia. Sleep 2016; 39: 675-685 DOI: 10.5665/sleep.5550.
- 8 Langdon DE, Hartman B. Performance upon sudden awaking. Tech Doc Rep USAF Sch Aerosp Med Sam Tdr US Air Force 1961; 62: 1-8
- 9 Hartman BO, Langdon DE. A second study on performance upon sudden awakening. SAM-TR-65-61. Tech Rep SAM-TR USAF Sch Aerosp Med 1965: 1-10
- 10 Hartman BO, Langdon DE, McKenzie RE. A third study on performance upon sudden awakening. SAM-TR-65-63. Tech Rep SAM-TR USAF Sch Aerosp Med 1965: 1-4
- 11 Pau MA, Brown G, Buguet A. et al Melatonin and zopiclone as pharmacologic aids to facilitate crew rest. Aviat Space Environ Med 2001; 72: 974-984
- 12 Home J, Moseley R. Sudden early-morning awakening impairs immediate tactical planning in a changing ‘emergency’ scenario. J Sleep Res 2011; 20: 275-278 DOI: 10.1111/j.1365-2869.2010.00904.x.
- 13 Centofanti S, Bank S, Coussens S. et al A pilot study investigating the impact of a caffeine-nap on alertness during a simulated night shift. Chronobiol Int 2020; 37: 1469-1473 DOI: 10.1080/07420528.2020.1804922.
- 14 Newman RA, Kamimori GH, Wesensten NJ. et al Caffeine gum minimizes sleep inertia. Percept Mot Skills 2013; 116: 280-293 DOI: 10.2466/29.22.25.PMS.116.1.280-293.
- 15 Harrison EM, Gorman MR, Mednick SC. The effect of narrowband 500 nm light on daytime sleep in humans. Physiol Behav 2011; 103: 197-202 DOI: 10.1016/j.physbeh.2011.01.020.
- 16 Hilditch CJ, Wong LR, Bathurst NG. et al Rise and shine: The use of polychromatic short-wavelength-enriched light to mitigate sleep inertia at night following awakening from slow-wave sleep. J Sleep Res 2022; 31: e13558 DOI: 10.1111/jsr.13558.
- 17 Figueiro MG, Sahin L, Roohan C. et al Effects of red light on sleep inertia. Nat Sci Sleep 2019; 22: 45-57 DOI: 10.2147/NSS.S195563.
- 18 Leong RLF, Lau T, Dicom AR. et al Influence of mid-afternoon nap duration and sleep parameters on memory encoding, mood, processing speed, and vigilance. Sleep 2023; 46: zsad025 DOI: 10.1093/sleep/zsad025.