Flugmedizin · Tropenmedizin · Reisemedizin - FTR 2024; 31(03): 117-122
DOI: 10.1055/a-2300-5649
Raumfahrtmedizin

Touching Surfaces: einfache Anwendung, große Auswirkung

Touching Surfaces: simplify to amplify
Carolin L. Krämer
1   Angewandte Naturwissenschaften, Hochschule Bonn-Rhein-Sieg, Rheinbach
2   Institut für Luft- und Raumfahrtmedizin, Deutsches Zentrum für Luft- und Raumfahrt, Köln
,
Katharina Siems
2   Institut für Luft- und Raumfahrtmedizin, Deutsches Zentrum für Luft- und Raumfahrt, Köln
,
Daniel W. Müller
3   Lehrstuhl für Funktionswerkstoffe, Material Engineering Center Saarland, Universität des Saarlandes, Saarbrücken
,
Stefan Leuko
2   Institut für Luft- und Raumfahrtmedizin, Deutsches Zentrum für Luft- und Raumfahrt, Köln
,
Frank Mücklich
3   Lehrstuhl für Funktionswerkstoffe, Material Engineering Center Saarland, Universität des Saarlandes, Saarbrücken
,
Matthias Maurer
4   Europäische Astronautenzentrum (EAC), Europäische Raumfahrtagentur (ESA), Köln
,
Ralf Moeller
1   Angewandte Naturwissenschaften, Hochschule Bonn-Rhein-Sieg, Rheinbach
2   Institut für Luft- und Raumfahrtmedizin, Deutsches Zentrum für Luft- und Raumfahrt, Köln
› Institutsangaben

ZUSAMMENFASSUNG

Mikroorganismen begleiten uns in unserem Alltag als essenzieller Teil des menschlichen Körpers und der von uns bewohnten Lebensräume. Während viele der Mikroorganismen für uns Menschen nützlich sind, können einige von ihnen Infektionen verursachen. Die einzigartigen Bedingungen, die während Raumfahrtmissionen vorliegen, wirken sich auch auf das Immunsystem aus, wodurch opportunistische Pathogene eine Gefahr darstellen können. Viele Mikroorganismen können lange auf Oberflächen überleben, die dadurch zu einer Quelle der Verbreitung von opportunistisch pathogenen Mikroorganismen werden. Um diese Verbreitung zu verhindern, können antimikrobielle Oberflächen eingesetzt werden. Touching Surfaces ist ein interdisziplinäres Projekt, das antibakterielle Oberflächen für die Anwendung in Raumfahrt und auf der Erde testet. Die einfache Implementierung aufgrund der geringen Größe und Tragbarkeit der Touch Arrays ermöglicht die Prüfung antimikrobieller Oberflächen unter verschiedenen Bedingungen.

ABSTRACT

Microorganisms accompany us in our everyday lives as an essential part of the human body and the habitats we inhabit. While many of the microorganisms are beneficial for us human beings, some of them can cause infections. Due to the unique conditions during spaceflight impacting the immune system, opportunistic pathogens can be dangerous. Many microorganisms can survive on surfaces for a long time, making them a potential source of infection. Using antimicrobial surfaces for frequently touched areas, the spread of opportunistic pathogens could be prevented in spaceflight and on Earth. Touching Surfaces is an interdisciplinary project using material science and microbiology for applied testing of antibacterial surfaces for spaceflight and application on Earth. Its easy implementation due to the small size of the Touch Arrays and portability, allows testing of antimicrobial surfaces under various conditions such as microgravity like on the International Space Station.



Publikationsverlauf

Artikel online veröffentlicht:
29. Mai 2024

© 2024. Thieme. All rights reserved.

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • Literatur

  • 1 Hooper LV, Midtvedt T, Gordon JI. How host-microbial interactions shape the nutrient environment of the mammalian intestine. Annu Rev Nutr 2002; 22: 283-307
  • 2 Bäckhed F, Ley RE, Sonnenburg JL. et al Host-bacterial mutualism in the human intestine. Science 2005; 307: 1915-1920
  • 3 Byrd AL, Belkaid Y, Segre JA. The human skin microbiome. Nat Rev Microbiol 2018; 16: 143-155
  • 4 Adams RI, Bateman AC, Bik HM. et al Microbiota of the indoor environment: a meta-analysis. Microbiome 2015; 03: 49
  • 5 Rai S, Sing DK, Kumar A. Microbial, environmental and anthropogenic factors influencing the indoor microbiome of the built environment. J Basic Microbiol 2021; 61: 267-292
  • 6 Hospidsky D, Yamamoto N, Nazaroff WW. et al Characterizing airborne fungal and bacterial concentrations and emission rates in six occupied children‘s classrooms. Indoor Air 2015; 25: 641-652
  • 7 Qian J, Hospodsky D, Yamamoto N. et al Size-resolved emission rates of airborne bacteria and fungi in an occupied classroom. Indoor Air 2012; 22: 339-351
  • 8 Ruiz-Calderon JF, Cavallin H, Song SJ. et al Walls talk: Microbial biogeography of homes spanning urbanization. Sci Adv 2016; 02: e1501061
  • 9 Mora M, Wink L, Kögler I. et al Space Station conditions are selective but do not alter microbial characteristics relevant to human health. Nat Commun 2019; 10: 3990
  • 10 Castro V, Bruce R, Ott C. et al The Influence of Microbiology on Spacecraft Design and Controls: A Historical Perspective of the Shuttle and International Space Station Programs. SAE Technical Paper 2006-01-2156 2006
  • 11 Pierson DL. Microbial contamination of spacecraft. Gravit Space Biol Bull 2001; 14: 1-6
  • 12 Russotto V, Cortegiani A, Raineri SM. et al Bacterial contamination of inanimate surfaces and equipment in the intensive care unit. J Intensive Care 2015; 03: 54
  • 13 Weber DJ, Rutala WA, Miller MB. et al Role of hospital surfaces in the transmission of emerging health care-associated pathogens: norovirus, Clostridium difficile, and Acinetobacter species. Am J Infect Control 2010; 38 (05) 01 S25-S33
  • 14 Crucian B, Babiak-Vazquez A, Johnston S. et al Incidence of clinical symptoms during long-duration orbital spaceflight. Int J Gen Med 2016; 09: 383-391
  • 15 Crucian B, Choukèr A.. Immune System in Space: General Introduction and Observations on Stress-Sensitive Regulations. In: Choukèr A (ed). Stress Challenges and Immunity in Space. Springer, Cham 205-220
  • 16 Crucian B, Stowe RP, Mehta S. et al Alterations in adaptive immunity persist during long-duration spaceflight. NPJ Microgravity 2015; 01: 15013
  • 17 Yamaguchi N, Roberts M, Castro S. et al Microbial monitoring of crewed habitats in space-current status and future perspectives. Microbes Environ 2014; 29: 250-260
  • 18 Lang JM, Coil DA, Neches RY. et al A microbial survey of the International Space Station (ISS). PeerJ 2017; 05: e4029
  • 19 Mora M, Mahnert A, Koskinen K. et al Microorganisms in Confined Habitats: Microbial Monitoring and Control of Intensive Care Units, Operating Rooms, Cleanrooms and the International Space Station. Front Microbiol 2016; 07: 1573
  • 20 Mora M, Perras A, Alekhova TA. et al Resilient microorganisms in dust samples of the International Space Station-survival of the adaptation specialists. Microbiome 2016; 04: 65
  • 21 Sing NK, Wood JM, Karouia F. et al Succession and persistence of microbial communities and antimicrobial resistance genes associated with International Space Station environmental surfaces. Microbiome 2018; 06: 204
  • 22 Kim W, Tengra FK, Young Z. et al Spaceflight promotes biofilm formation by Pseudomonas aeruginosa. PLoS One 2013; 08: e62437
  • 23 Urbaniak C, Checinska Sielaff A, Frey KG. et al Detection of antimicrobial resistance genes associated with the International Space Station environmental surfaces. Sci Rep 2018; 08: 814
  • 24 Wilson JW, Ott CM, Höner zu Bentrup K. et al Space flight alters bacterial gene expression and virulence and reveals a role for global regulator Hfq. Proc Natl Acad Sci U S A 2007; 104: 16299-16304
  • 25 Ilyin VK. Microbiological status of cosmonauts during orbital spaceflights on Salyut and Mir orbital station. Acta Astronaut 2005; 56: 839-850
  • 26 Grass G, Rensing C, Solioz M. Metallic copper as an antimicrobial surface. Appl Environ Microbiol 2011; 77: 1541-1547
  • 27 Borkow G, Gabbay J. Copper, an ancient remedy returning to fight microbial, fungal and viral infection. Current Chemical Biology 2009; 03: 272-278
  • 28 Hans M, Erbe A, Mathews S. et al Role of copper oxides in contact killing of bacteria. Langmuir 2013; 29: 16160-16166
  • 29 Hans M, Támara JC, Mathews S. et al Laser cladding of stainless steel with a copper–silver alloy to generate surfaces of high antimicrobial activity. Applied Surface Science 2014; 320: 195-199
  • 30 Müller DW, Lößlein S, Terriac E. et al Increasing antibacterial efficiency of Cu surfaces by targeted surface functionalization via ultrashort pulsed direct laser interference patterning. Advanced Materials Interfaces 2021; 08: 2001656
  • 31 Tripathy A, Kumar A, Sreedharan S. et al Fabrication of Low-Cost Flexible Superhydrophobic Antibacterial Surface with Dual-Scale Roughness. ACE Biomater Sci Eng 2018; 04: 2213-2223
  • 32 Siems K, Müller DW, Maertens L. et al Testing laser-structured antimicrobial surfaces under space conditions: the design of the ISS experiment BIOFILMS. Front Space Technol Sec. Microgravity 2021: 2
  • 33 NASA. Station Facts. Im Internet https://www.nasa.gov/international-space-station/space-station-facts-and-figures/
  • 34 Rosenzweig JA, Abogunde O, Thomas K. et al Spaceflight and modeled microgravity effects on microbial growth and virulence. Appl Microbiol Biotechnol 2010; 85: 885-891