Subscribe to RSS
Please copy the URL and add it into your RSS Feed Reader.
https://www.thieme-connect.de/rss/thieme/en/10.1055-s-00000084.xml
Synthesis 2024; 56(21): 3341-3347
DOI: 10.1055/a-2302-5887
DOI: 10.1055/a-2302-5887
paper
Special Issue PSRC-10 (10th Pacific Symposium on Radical Chemistry)
Photoredox-Enabled Synthesis of α-Alkylated Alkenylammonium Salts
This work was supported by Japan Science and Technology Agency (JST) Precursory Research for Embryonic Science and Technology (PRESTO) Grant Number JPMJPR20D8 (K.M.). This work was also supported by Japan Society for the Promotion of Science (JSPS) KAKENHI Grant Numbers 22K20545 and 23K13753 (Y.S.), the Ube Industries Foundation (K.M.), Takeda Science Foundation (K.M.), Astellas Foundation for Research on Metabolic Disorders (K.M.), and the Uehara Memorial Foundation (K.M.).
Abstract
The development of novel synthetic methods for quaternary ammonium salts is highly demanded since the current synthesis heavily relies on the conventional Menshutkin reaction. Herein, we report photoredox-catalyzed alkylation of α-brominated alkenylammonium salts. Mechanistically, the generation of a highly reactive α-ammoniovinyl radical is the key to our method. This reaction enables the synthesis of various unprecedented α-alkylated alkenylammonium salts.
Key words
alkenylammonium salts - photoredox catalyst - alkylation - halogen-atom transfer - quaternary ammonium saltsSupporting Information
- Supporting information for this article is available online at https://doi.org/10.1055/a-2302-5887.
- Supporting Information
Publication History
Received: 27 March 2024
Accepted after revision: 09 April 2024
Accepted Manuscript online:
09 April 2024
Article published online:
23 April 2024
© 2024. Thieme. All rights reserved
Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany
-
References
- 1a Bureš F. Top. Curr. Chem. 2019; 377: 14
- 1b Brycki B, Szulc A, Brycka J, Kowalczyk I. Molecules 2023; 28: 6336
- 1c Tischer M, Pradel G, Ohlsen K, Holzgrabe U. ChemMedChem 2012; 7: 22
- 1d Novacek J, Waser M. Eur. J. Org. Chem. 2013; 637
- 1e Hashimoto T, Maruoka K. Chem. Rev. 2007; 107: 5656
- 1f Qian D, Sun J. Chem. Eur. J. 2019; 25: 3740
- 2 Menschutkin N. Z. Phys. Chem. 1890; 5U: 589
- 3 Stork G, Brizzolara A, Landesman H, Szmuszkovicz J, Terrell R. J. Am. Chem. Soc. 1963; 85: 207
- 4 Kleine G. Justus Liebigs Ann. Chem. 1904; 337: 81
- 5 Yoshita A, Sakakibara Y, Murakami K. Bull. Chem. Soc. Jpn. 2023; 96: 303
- 6a Prier CK, Rankic DA, MacMillan DW. C. Chem. Rev. 2013; 113: 5322
- 6b Matsui JK, Lang SB, Heitz DR, Molander GA. ACS Catal. 2017; 7: 2563
- 6c Romero NA, Nicewicz DA. Chem. Rev. 2016; 116: 10075
- 6d Wang C.-S, Dixneuf PH, Soulé J.-F. Chem. Rev. 2018; 118: 7532
- 6e Sakakibara Y, Murakami K. ACS Catal. 2022; 12: 1857
- 6f Vega-Peñaloza A, Mateos J, Companyó X, Escudero-Casao M, Dell’Amico L. Angew. Chem. Int. Ed. 2021; 60: 1082
- 6g Wiles RJ, Molander GA. Isr. J. Chem. 2020; 60: 281
- 7 Juliá F, Constantin T, Leonori D. Chem. Rev. 2022; 122: 2292
- 8 Sakai HA, Liu W, Le CC, MacMillan DW. C. J. Am. Chem. Soc. 2020; 142: 11691
- 9a Sarkar S, Cheung KP. S, Gevorgyan V. Chem. Sci. 2020; 11: 12974
- 9b Capaldo L, Ravelli D, Fagnoni M. Chem. Rev. 2022; 122: 1875
- 9c Capaldo L, Ravelli D. Eur. J. Org. Chem. 2017; 2056
- 9d Cao H, Tang X, Tang H, Yuan Y, Wu J. Chem Catal. 2021; 1: 523
- 10 Constantin T, Zanini M, Regni A, Sheikh NS, Juliá F, Leonori D. Science 2020; 367: 1021
- 11 Cradlebaugh JA, Zhang L, Shelton GR, Litwinienko G, Smart BE, Ingold KU, Dolbier WR. Jr. Org. Biomol. Chem. 2004; 2: 2083
- 12a Yakhin OI, Lubyanov AA, Yakhin IA, Brown PH. Front. Plant Sci. 2017; 7: 2049
- 12b Ahmad A, Blasco B, Martos V. Front. Plant Sci. 2022; 13: 862034
- 13 Kinoshita T, Sakakibara Y, Hirano T, Murakami K. ChemRxiv 2023; preprint DOI: DOI: 10.26434/chemrxiv-2023-bwm63.