Subscribe to RSS
DOI: 10.1055/a-2305-1411
Identifizierung von Patientinnen mit HR+, HER2– Brustkrebs im Frühstadium mit hohem Rezidivrisiko
Identification of Patients with Early HR+ HER2– Breast Cancer at High Risk of Recurrence
Zusammenfassung
Die Inzidenz von Brustkrebs ist in den letzten 2 Jahrzehnten gestiegen; gleichzeitig hat sich das Überleben durch eine frühere Erkennung und bessere Therapiemöglichkeiten verbessert. Trotz dieser Verbesserungen treten lokoregionäre Rezidive sowie Fernmetastasen bei bis zu 10 resp. 30 % aller mit Brustkrebs im Frühstadium diagnostizierten Frauen auf. Rund 70 % aller Brustkrebsfälle sind HR+ (hormonrezeptorpositiv), HER2– (humaner epidermaler Wachstumsfaktor-Rezeptor-2-negativ) und somit mit einem anhaltenden Rezidivrisiko assoziiert, das bis zu 20 Jahre nach der Diagnose/Erstbehandlung anhält. Wir führten eine narrative Übersichtsarbeit durch und kombinierten dabei unsere Suche in PubMed mit unseren klinischen Erfahrungen, um die Patientinnen-Charakteristika, Biomarker und Instrumente zur Analyse von Genomprofilen zu beschreiben, die Klinik-Ärztinnen und ‑ärzten zur Identifizierung von Patientinnen mit HR+, HER2– frühem Mammakarzinom mit einem hohen Rezidivrisiko zur Verfügung stehen, und um Empfehlungen zur Klassifizierung von Patientinnen gemäß ihrem Rezidivrisiko aufzustellen. Es wurden auch nationale und internationale Behandlungsrichtlinien zusammengefasst. Die korrekte Einschätzung des Rezidivrisikos ist für diese Patientinnen wichtig, weil das prognostizierte Risiko die nachfolgenden Therapie-Entscheidungen steuern wird; unpräzise Einschätzungen können zur Über- bzw. Untertherapie führen, und beide Szenarien haben negative Konsequenzen für die Patientinnen. Es gibt zahlreiche prognostische Werkzeuge und Faktoren, die für die Analyse von Brustkrebs im Frühstadium empfohlen werden; es gibt aber keinen Test, der für sich genommen eine akkurate Prognose bieten kann. Da es keinen Test gibt, der für sich allein genommen imstande ist, eine akkurate Prognose zu bieten, sollte eine Kombination verschiedener Testverfahren verwendet werden. Risikoschwellen sind wichtig, da diese die Entscheidung für eine optimierte, ausgewogene Therapie bei HR+, HER2– frühem Mammakarzinom lenkt. Dennoch sollte jede prognostische Evaluierung individuell durchgeführt werden, da ein patientenspezifisches prognostisches Vorgehen wichtig ist, um eine Über- oder Untertherapie zu vermeiden.
Abstract
Breast cancer incidence has increased in the last 2 decades and, simultaneously, survival has improved due to earlier detection and improved treatment options. Despite this improvement, locoregional recurrences and distant metastases occur in up to 10 and 30 % of women diagnosed with early breast cancer, respectively. Around 70 % of breast cancers are hormone receptor positive (HR+), human epidermal growth factor receptor 2 negative (HER2–), and associated with a persistent risk of relapse up to 20 years after diagnosis/initial treatment. We conducted a narrative review by combining PubMed searches with our clinical experience to describe patient characteristics, biomarkers, and genomic profiling tools available to clinicians for the identification of patients with HR+, HER2– early breast cancer at high risk of recurrence and to provide recommendations to classify patients into recurrence risk categories. National and international treatment guidelines are also summarized. Accurate assessment of the risk of recurrence in these patients is crucial as the predicted risk guides treatment decisions; imprecise estimations can result in over- or undertreatment, with either scenario having negative consequences for patients. Multiple prognostic tools and factors are recommended for early breast cancer, and no single test provides accurate prognosis in isolation. Since no single test can provide accurate prognosis in isolation, a combination of tools should therefore be used. Risk thresholds are important to guide optimized and balanced therapeutic decisions in HR+, HER2– early breast cancer. However, prognostic assessment should be performed on a case-by-case basis, making patient-specific prognostic approaches essential to avoid over- or undertreatment.
Publication History
Received: 15 December 2023
Accepted after revision: 23 December 2023
Article published online:
09 December 2024
© 2024. This article was originally published by Thieme in Geburtsh Frauenheilk 2024; 84: 164–184 as an open access article under the terms of the Creative Commons Attribution-NonDerivative-NonCommercial-License, permitting copying and reproduction so long as the original work is given appropriate credit. Contents may not be used for commercial purposes, or adapted, remixed, transformed or built upon. (https://creativecommons.org/licenses/by-nc-nd/4.0/).
Georg Thieme Verlag KG
Oswald-Hesse-Straße 50, 70469 Stuttgart, Germany
-
Literatur
- 1 Sung H, Ferlay J, Siegel RL. et al. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J Clin 2021; 71: 209-249
- 2 European Cancer Information System (ECIS). Breast cancer burden in EU-27. 2020. Accessed October 27, 2023 at:. https://ecis.jrc.ec.europa.eu/pdf/factsheets/Breast_cancer_en-Dec_2020.pdf
- 3 Bray F, Ferlay J, Soerjomataram I. et al. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin 2018; 68: 394-424
- 4 Bethesda MD. National Cancer Institute. SEER Cancer Stat Facts: Female Breast Cancer. Accessed December 21, 2023 at:. https://seer.cancer.gov/statfacts/html/breast.html
- 5 Lowery A, Kell M, Glynn R. Locoregional recurrence after breast cancer surgery: a systematic review by receptor phenotype. Breast Cancer Res Treat 2012; 133: 831-841
- 6 Neri A, Marrelli D, Rossi S. Breast cancer local recurrence: risk factors and prognostic relevance of early time to recurrence. World J Surg 2007; 31: 36-45
- 7 Voogd AC, Nielsen M, Peterse JL. et al. Differences in risk factors for local and distant recurrence after breast-conserving therapy or mastectomy for stage I and II breast cancer: pooled results of two large European randomized trials. J Clin Oncol 2001; 19: 1688-1697
- 8 Sopik V, Nofech-Mozes S, Sun P. et al. The relationship between local recurrence and death in early-stage breast cancer. Breast Cancer Res Treat 2016; 155: 175-185
- 9 Wangchinda P, Ithimakin S. Factors that predict recurrence later than 5 years after initial treatment in operable breast cancer. World J Surg Oncol 2016; 14: 223
- 10 Mariotto AB, Zou Z, Zhang F. et al. Can we use survival data from cancer registries to learn about disease recurrence? The case of breast cancer. Cancer Epidemiol Biomarkers Prev 2018; 27: 1332-1341
- 11 Noone AM, Cronin KA, Altekruse SF. et al. Cancer incidence and survival trends by subtype using data from the Surveillance Epidemiology and End Results Program, 1992-2013. Cancer Epidemiol Biomarkers Prev 2017; 26: 632-641
- 12 Pedersen RN, Esen BÖ, Mellemkjær L. et al. The incidence of breast cancer recurrence 10-32 years after primary diagnosis. J Natl Cancer Inst 2022; 114: 391-399
- 13 Early Breast Cancer Trialistsʼ Collaborative Group (EBCTCG). Aromatase inhibitors versus tamoxifen in early breast cancer: patient-level metaanalysis of the randomised trials. Lancet 2015; 386: 1341-1352
- 14 Peto R, Davies C. Early Breast Cancer Trialist Collaborative Group (EBCTCG). et al. Comparisons between different polychemotherapy regimens for early breast cancer: meta-analyses of long-term outcome among 100000 women in 123 randomised trials. Lancet 2012; 379: 432-444
- 15 Dowsett M, Sestak I, Lopez-Knowles E. et al. Comparison of PAM50 risk of recurrence score with Oncotype DX and IHC4 for predicting risk of distant recurrence after endocrine therapy. J Clin Oncol 2013; 31: 2783-2790
- 16 Burstein HJ, Curigliano G, Thürlimann B. et al. Customizing local and systemic therapies for women with early breast cancer: the St. Gallen International Consensus Guidelines for treatment of early breast cancer 2021. Ann Oncol 2021; 32: 1216-1235
- 17 Cardoso F, Kyriakides S, Ohno S. et al. Early breast cancer: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up. Ann Oncol 2019; 30: 1194-1220
- 18 Hadji P, Coleman RE, Wilson C. et al. Adjuvant bisphosphonates in early breast cancer: consensus guidance for clinical practice from a European Panel. Ann Oncol 2016; 27: 379-390
- 19 Davies C, Godwin J. Early Breast Cancer Trialistsʼ Collaborative Group (EBCTCG). et al. Relevance of breast cancer hormone receptors and other factors to the efficacy of adjuvant tamoxifen: patient-level meta-analysis of randomised trials. Lancet 2011; 378: 771-784
- 20 Ditsch N, Kolberg-Liedtke C, Friedrich M. et al. AGO Recommendations for the diagnosis and treatment of patients with early breast cancer: Update 2021. Breast Care (Basel) 2021; 16: 214-227
- 21 Andre F, Ismaila N, Allison KH. et al. Biomarkers for adjuvant endocrine and chemotherapy in early-stage breast cancer: ASCO guideline update. J Clin Oncol 2022; 40: 1816-1837
- 22 Cardoso F, vanʼt Veer LJ, Bogaerts J. et al. 70-gene signature as an aid to treatment decisions in early-stage breast cancer. N Engl J Med 2016; 375: 717-729
- 23 Wishart GC, Bajdik CD, Azzato EM. et al. A population-based validation of the prognostic model PREDICT for early breast cancer. Eur J Surg Oncol 2011; 37: 411-417
- 24 Hawley ST, Janz NK, Griffith KA. et al. Recurrence risk perception and quality of life following treatment of breast cancer. Breast Cancer Res Treat 2017; 161: 557-565
- 25 Walsh EM, Smith KL, Stearns V. Management of hormone receptor-positive, HER2–negative early breast cancer. Semin Oncol 2020; 47: 187-200
- 26 Pernas S, Barroso-Sousa R, Tolaney SM. Optimal treatment of early stage HER2–positive breast cancer. Cancer 2018; 124: 4455-4466
- 27 Burstein HJ, Lacchetti C, Anderson H. et al. Adjuvant endocrine therapy for women with hormone receptor-positive breast cancer: ASCO clinical practice guideline focused update. J Clin Oncol 2019; 37: 423-438
- 28 Foldi J, Meara T, Marczyk M. et al. Defining risk of late recurrence in earlystage estrogen receptor-positive breast cancer: clinical versus molecular tools. J Clin Oncol 2019; 37: 1365-1369
- 29 Giordano SH, Freedman RA, Somerfield MR. et al. Abemaciclib with endocrine therapy in the treatment of high-risk early breast cancer: ASCO Optimal Adjuvant Chemotherapy and Targeted Therapy Guideline rapid recommendation update. J Clin Oncol 2022; 40: 307-309
- 30 Harbeck N, Rastogi P, Martin M. et al. Adjuvant abemaciclib combined with endocrine therapy for high-risk early breast cancer: updated efficacy and Ki-67 analysis from the monarchE study. Ann Oncol 2021; 32: 1571-1581
- 31 Harbeck N, Rastogi P, OʼShaughnessy J. et al. LBA17 – Adjuvant abemaciclib plus endocrine therapy for HR+, HER2–, high-risk early breast cancer: Results from a preplanned monarchE overall survival interim analysis, including 5-year efficacy outcomes. Ann Oncol 2023; 34 (Suppl. 02) S1256
- 32 National Comprehensive Cancer Network (NCCN). Clinical Practice Guidelines in Oncology (NCCN Guidelines®) Breast Cancer Version 4.2022 – June 21, 2022. Accessed October 27, 2023 at:. https://www.nccn.org/professionals/physician_gls/pdf/breast.pdf
- 33 Vieira AF, Schmitt F. An update on breast cancer multigene prognostic tests-emergent clinical biomarkers. Front Med (Lausanne) 2018; 5: 248
- 34 Dowling RJO, Sparano JA, Goodwin PJ. et al. Toronto workshop on late recurrence in estrogen receptor-positive breast cancer: Part 2: Approaches to predict and identify late recurrence, research directions. JNCI Cancer Spectr 2019; 3: pkz049
- 35 Gasparini G, Pozza F, Harris AL. Evaluating the potential usefulness of new prognostic and predictive indicators in node-negative breast cancer patients. J Natl Cancer Inst 1993; 85: 1206-1219
- 36 Ruberg SJ, Shen L. Personalized medicine: four perspectives of tailored medicine. Stat Biopharm Res 2015; 7: 214-229
- 37 Stickeler E. Prognostic and predictive markers for treatment decisions in early breast cancer. Breast Care (Basel) 2011; 6: 193-198
- 38 Tarighati E, Keivan H, Mahani H. A review of prognostic and predictive biomarkers in breast cancer. Clin Exp Med 2023; 23: 1-16
- 39 Pan H, Gray R, Braybrooke J. et al. 20-Year risks of breast-cancer recurrence after stopping endocrine therapy at 5 years. N Engl J Med 2017; 377: 1836-1846
- 40 Yu KD, Wu SY, Liu GY. et al. Concurrent neoadjuvant chemotherapy and estrogen deprivation in patients with estrogen receptor-positive, human epidermal growth factor receptor 2-negative breast cancer (CBCSG-036): A randomized, controlled, multicenter trial. Cancer 2019; 125: 2185-2193
- 41 Gabriel NH, James LC, Carl JD. et al. Breast. In: Mahul BA. ed. American Joint Committee on Cancer (AJCC). AJCC cancer staging manual. 8th ed.. New York, NY: Springer; 2017: 589-628
- 42 Michaelson JS, Silverstein M, Wyatt J. et al. Predicting the survival of patients with breast carcinoma using tumor size. Cancer 2002; 95: 713-723
- 43 Sestak I, Dowsett M, Zabaglo L. et al. Factors predicting late recurrence for estrogen receptor-positive breast cancer. J Natl Cancer Inst 2013; 105: 1504-1511
- 44 Fisher B, Bauer M, Wickerham DL. et al. Relation of number of positive axillary nodes to the prognosis of patients with primary breast cancer. An NSABP update. Cancer 1983; 52: 1551-1557
- 45 Tonellotto F, Bergmann A, de Souza AbrahãoK. et al. Impact of number of positive lymph nodes and lymph node ratio on survival of women with node-positive breast cancer. Eur J Breast Health 2019; 15: 76-84
- 46 Koh J, Kim MJ. Introduction of a new staging system of breast cancer for radiologists: an emphasis on the prognostic stage. Korean J Radiol 2019; 20: 69-82
- 47 Carey LA, Metzger R, Dees EC. et al. American Joint Committee on Cancer tumor-node-metastasis stage after neoadjuvant chemotherapy and breast cancer outcome. J Natl Cancer Inst 2005; 97: 1137-1142
- 48 University of Nottingham and Nottingham University Hospitals NHS Trust. Assessment of Breast Cancer Grading Using the Nottingham Combined Histological Grading System. Accessed October 27, 2023 at:. http://www.nottingham.ac.uk/~mrzarg/nott.htm
- 49 Cuyún CarterG, Mohanty M, Stenger K. et al. Prognostic factors in hormone receptor-positive/human epidermal growth factor receptor 2- negative (HR+/HER2–) advanced breast cancer: A systematic literature review. Cancer Manag Res 2021; 13: 6537-6566
- 50 Paik S, Shak S, Tang G. et al. A multigene assay to predict recurrence of tamoxifen-treated, node-negative breast cancer. N Engl J Med 2004; 351: 2817-2826
- 51 van Dooijeweert C, van Diest PJ, Willems SM. et al. Significant inter- and intra-laboratory variation in grading of invasive breast cancer: A nationwide study of 33,043 patients in the Netherlands. Int J Cancer 2020; 146: 769-780
- 52 Dar H, Johansson A, Nordenskjöld A. et al. Assessment of 25-year survival of women with estrogen receptor-positive/erbb2-negative breast cancer treated with and without tamoxifen therapy: A secondary analysis of data from the Stockholm tamoxifen randomized clinical trial. JAMA Netw Open 2021; 4: e2114904
- 53 Colleoni M, Sun Z, Price KN. et al. Annual hazard rates of recurrence for breast cancer during 24 years of follow-up: Results from the International Breast Cancer Study Group trials I to V. J Clin Oncol 2016; 34: 927-935
- 54 Leen S, Steven VL, Marie DA. et al. Study assessing the quality of quantification of estrogen receptor protein expression by immunohistochemistry and gene expression in breast cancer. Patholog Res Int 2014; 2014: 372653
- 55 Allison KH, Hammond MEH, Dowsett M. et al. Estrogen and progesterone receptor testing in breast cancer: ASCO/CAP Guideline Update. J Clin Oncol 2020; 38: 1346-1366
- 56 Garutti M, Griguolo G, Botticelli A. et al. Definition of high-risk early hormone-positive her2-negative breast cancer: a consensus review. Cancers (Basel) 2022; 14: 1898
- 57 Dunnwald LK, Rossing MA, Li CI. Hormone receptor status, tumor characteristics, and prognosis: a prospective cohort of breast cancer patients. Breast Cancer Res 2007; 9: R6
- 58 Early Breast Cancer Trialist Collaborative Group (EBCTCG). Tamoxifen for early breast cancer: an overview of the randomised trials. Lancet 1998; 351: 1451-1467
- 59 Salmen J, Neugebauer J, Fasching PA. et al. Pooled analysis of the prognostic relevance of progesterone receptor status in five German cohort studies. Breast Cancer Res Treat 2014; 148: 143-151
- 60 Slamon DJ, Clark GM, Wong SG. et al. Human breast cancer: correlation of relapse and survival with amplification of the HER-2/neu oncogene. Science 1987; 235: 177-182
- 61 Wolff AC, Hammond MEH, Allison KH. et al. Human epidermal growth factor receptor 2 testing in breast cancer: American Society of Clinical Oncology/College of American Pathologists Clinical Practice Guideline Focused Update. J Clin Oncol 2018; 36: 2105-2122
- 62 Rakha EA, Pinder SE, Bartlett JM. et al. Updated UK recommendations for HER2 assessment in breast cancer. J Clin Pathol 2015; 68: 93-99
- 63 Wolff AC, Hammond ME, Hicks DG. et al. Recommendations for human epidermal growth factor receptor 2 testing in breast cancer: American Society of Clinical Oncology/College of American Pathologists clinical practice guideline update. J Clin Oncol 2013; 31: 3997-4013
- 64 Fehrenbacher L, Cecchini RS, Geyer jr. CE. et al. NSABP B-47/NRG oncology phase III randomized trial comparing adjuvant chemotherapy with or without trastuzumab in high-risk invasive breast cancer negative for HER2 by FISH and with IHC1+ or 2. J Clin Oncol 2020; 38: 444-453
- 65 Modi S, Jacot W, Yamashita T. et al. Trastuzumab deruxtecan in previously treated HER2–low advanced breast cancer. N Engl J Med 2022; 387: 9-20
- 66 Curigliano G, Viale G, Bagnardi V. et al. Clinical relevance of HER2 overexpression/amplification in patients with small tumor size and nodenegative breast cancer. J Clin Oncol 2009; 27: 5693-5699
- 67 Konecny G, Pauletti G, Pegram M. et al. Quantitative association between HER-2/neu and steroid hormone receptors in hormone receptor-positive primary breast cancer. J Natl Cancer Inst 2003; 95: 142-153
- 68 Azim jr. HA, Partridge AH. Biology of breast cancer in young women. Breast Cancer Res 2014; 16: 427
- 69 Dialla PO, Quipourt V, Gentil J. et al. In breast cancer, are treatments and survival the same whatever a patientʼs age? A population-based study over the period 1998-2009. Geriatr Gerontol Int 2015; 15: 617-626
- 70 Satram-Hoang S, Reyes CM, Stein A. et al. Which patient characteristics drive treatment decisions in elderly patients with early stage hormone receptor-positive breast cancer?. J Clin Oncol 2017; 35 (15) 538
- 71 Takuwa H, Tsuji W, Yotsumoto F. Overall survival of elderly patients with breast cancer is not related to breast-cancer-specific survival: A single institution experience in Japan. Breast Dis 2018; 37: 177-183
- 72 Muss HB, Polley MC, Berry DA. et al. Randomized trial of standard adjuvant chemotherapy regimens versus capecitabine in older women with early breast cancer: 10-year update of the CALGB 49907 Trial. J Clin Oncol 2019; 37: 2338-2348
- 73 Maranta AF, Broder S, Fritzsche C. et al. Do YOU know the Ki-67 index of your breast cancer patients? Knowledge of your institutionʼs Ki-67 index distribution and its robustness is essential for decision-making in early breast cancer. Breast 2020; 51: 120-126
- 74 Gwin K, Pinto M, Tavassoli FA. Complementary value of the Ki-67 proliferation index to the oncotype DX recurrence score. Int J Surg Pathol 2009; 17: 303-310
- 75 Gluz O, Nitz UA, Christgen M. et al. West German Study Group Phase III PlanB Trial: first prospective outcome data for the 21-gene recurrence score assay and concordance of prognostic markers by central and local pathology assessment. J Clin Oncol 2016; 34: 2341-2349
- 76 Nielsen TO, Leung SCY, Rimm DL. et al. Assessment of Ki67 in breast cancer: Updated recommendations from the International Ki67 in Breast Cancer Working Group. J Natl Cancer Inst 2021; 113: 808-819
- 77 Yerushalmi R, Woods R, Ravdin PM. et al. Ki67 in breast cancer: prognostic and predictive potential. Lancet Oncol 2010; 11: 174-183
- 78 Inwald EC, Klinkhammer-Schalke M, Hofstädter F. et al. Ki-67 is a prognostic parameter in breast cancer patients: results of a large population-based cohort of a cancer registry. Breast Cancer Res Treat 2013; 139: 539-552
- 79 Nitz U, Gluz O, Clemens M. et al. West German Study PlanB Trial: adjuvant four cycles of epirubicin and cyclophosphamide plus docetaxel versus six cycles of docetaxel and cyclophosphamide in HER2–negative early breast cancer. J Clin Oncol 2019; 37: 799-808
- 80 Inic Z, Zegarac M, Inic M. et al. Difference between Luminal A and Luminal B subtypes according to Ki-67, tumor size, and progesterone receptor negativity providing prognostic information. Clin Med Insights Oncol 2014; 8: 107-111
- 81 Cheang MC, Chia SK, Voduc D. et al. Ki67 index, HER2 status, and prognosis of patients with luminal B breast cancer. J Natl Cancer Inst 2009; 101: 736-750
- 82 Nitz UA, Gluz O, Kümmel S. et al. Endocrine therapy response and 21-gene expression assay for therapy guidance in HR+/HER2– early breast cancer. J Clin Oncol 2022; 40: 2557-2567
- 83 Thakur SS, Li H, Chan AMY. et al. The use of automated Ki67 analysis to predict Oncotype DX risk-of-recurrence categories in early-stage breast cancer. PloS One 2018; 13: e0188983
- 84 Raap M, Ließem S, Rüschoff J. et al. Quality assurance trials for Ki67 assessment in pathology. Virchows Arch 2017; 471: 501-508
- 85 Curigliano G, Burstein HJ, Winer EP. et al. St. Gallen international expert consensus on the primary therapy of early breast cancer 2017. De-escalating and escalating treatments for early stage breast cancer: the St. Gallen International Expert Consensus Conference on the Primary Therapy of Early Breast Cancer 2017. Ann Oncol 2017; 28: 1700-1712
- 86 Fasching PA, Gass P, Häberle L. et al. Prognostic effect of Ki-67 in common clinical subgroups of patients with HER2–negative, hormone receptor-positive early breast cancer. Breast Cancer Res Treat 2019; 175: 617-625
- 87 Quality in Pathology. Digital Readout Tests. Accessed December 21, 2023 at:. https://www.qualityinpathology.com/en_GB/zerpa/trials?select=individual
- 88 Pang S, Li H, Xu S. et al. Circulating tumour cells at baseline and late phase of treatment provide prognostic value in breast cancer. Sci Rep 2021; 11: 13441
- 89 Rack B, Schindlbeck C, Jückstock J. et al Circulating tumor cells predict survival in early average-to-high risk breast cancer patients. J Natl Cancer Inst 2014; 106: dju066 Erratum in: J Natl Cancer Inst 2014; 106: dju273.
- 90 Thery L, Meddis A, Cabel L. et al. Circulating tumor cells in early breast cancer. JNCI Cancer Spectr 2019; 3: pkz026
- 91 Braun S, Kentenich C, Janni W. et al. Lack of effect of adjuvant chemotherapy on the elimination of single dormant tumor cells in bone marrow of high-risk breast cancer patients. J Clin Oncol 2000; 18: 80-86
- 92 Braun S, Pantel K, Müller P. et al. Cytokeratin-positive cells in the bone marrow and survival of patients with stage I, II, or III breast cancer. N Engl J Med 2000; 342: 525-533
- 93 Hartkopf AD, Brucker SY, Taran FA. et al. Disseminated tumour cells from the bone marrow of early breast cancer patients: Results from an international pooled analysis. Eur J Cancer 2021; 154: 128-137
- 94 Hartkopf AD, Wallwiener M, Fehm TN. et al. Disseminated tumor cells from the bone marrow of patients with nonmetastatic primary breast cancer are predictive of locoregional relapse. Ann Oncol 2015; 26: 1155-1160
- 95 Cullinane C, Fleming C, OʼLeary DP. et al. Association of circulating tumor DNA with disease-free survival in breast cancer: A systematic review and meta-analysis. JAMA Netw Open 2020; 3: e2026921
- 96 Tan G, Chu C, Gui X. et al. The prognostic value of circulating cell-free DNA in breast cancer: A meta-analysis. Medicine (Baltimore) 2018; 97: e0197
- 97 Elliott MJ, Cescon DW. Development of novel agents for the treatment of early estrogen receptor positive breast cancer. Breast 2022; 62 (Suppl. 01) S34-S42
- 98 Lundin J, Lehtimäki T, Lundin M. et al. Generalisability of survival estimates for patients with breast cancer-a comparison across two population-based series. Eur J Cancer 2006; 42: 3228-3235
- 99 Fong Y, Evans J, Brook D. et al. The Nottingham Prognostic Index: fiveand ten-year data for all-cause survival within a screened population. Ann R Coll Surg Engl 2015; 97: 137-139
- 100 Min N, Wei Y, Zheng Y. et al. Advancement of prognostic models in breast cancer: a narrative review. Gland Surg 2021; 10: 2815-2831
- 101 Green AR, Soria D, Stephen J. et al. Nottingham Prognostic Index Plus: validation of a clinical decision making tool in breast cancer in an independent series. J Pathol Clin Res 2016; 2: 32-40
- 102 Ravdin PM, Siminoff LA, Davis GJ. et al. Computer program to assist in making decisions about adjuvant therapy for women with early breast cancer. J Clin Oncol 2001; 19: 980-991
- 103 Campbell HE, Taylor MA, Harris AL. et al. An investigation into the performance of the Adjuvant! Online prognostic programme in early breast cancer for a cohort of patients in the United Kingdom. Br J Cancer 2009; 101: 1074-1084
- 104 Mook S, Schmidt MK, Rutgers EJ. et al. Calibration and discriminatory accuracy of prognosis calculation for breast cancer with the online Adjuvant! program: a hospital-based retrospective cohort study. Lancet Oncol 2009; 10: 1070-1076
- 105 van Kleef JJ, Bretveld R, Groothuis-Oudshoorn K. et al. Population-based validation study of Adjuvant! for primary breast cancer patients in the Netherlands. San Antonio Breast Cancer Symposium; 2015; San Antonio, TX, USA.
- 106 Sparano JA, Gray RJ, Ravdin PM. et al. Clinical and genomic risk to guide the use of adjuvant therapy for breast cancer. N Engl J Med 2019; 380: 2395-2405
- 107 Wishart GC, Azzato EM, Greenberg DC. et al. PREDICT: a new UK prognostic model that predicts survival following surgery for invasive breast cancer. Breast Cancer Res 2010; 12: R1
- 108 Candido Dos Reis FJ, Wishart GC, Dicks EM. et al. An updated PREDICT breast cancer prognostication and treatment benefit prediction model with independent validation. Breast Cancer Res 2017; 19: 58
- 109 Cao L, Stabellini N, Towe CW. et al. BPI22-014: Independent validation of the PREDICT Prognostication Tool in U.S. breast cancer patients using the National Cancer Database (NCDB). J Natl Compr Canc Netw 2022; 20: 14
- 110 Grootes I, Keeman R, Blows FM. et al. Incorporating progesterone receptor expression into the PREDICT breast prognostic model. Eur J Cancer 2022; 173: 178-193
- 111 Dowsett M, Sestak I, Regan MM. et al. Integration of clinical variables for the prediction of late distant recurrence in patients with estrogen receptor-positive breast cancer treated with 5 years of endocrine therapy: CTS5. J Clin Oncol 2018; 36: 1941-1948
- 112 Richman J, Ring A, Dowsett M. et al. Clinical validity of clinical treatment score 5 (CTS5) for estimating risk of late recurrence in unselected, non-trial patients with early oestrogen receptor-positive breast cancer. Breast Cancer Res Treat 2021; 186: 115-123
- 113 Cuzick J, Dowsett M, Pineda S. et al. Prognostic value of a combined estrogen receptor, progesterone receptor, Ki‐67, and human epidermal growth factor receptor 2 immunohistochemical score and comparison with the Genomic Health recurrence score in early breast cancer. J Clin Oncol 2011; 29: 4273-4278
- 114 Holm J, Yu NY, Johansson A. et al. Concordance of immunohistochemistry-based and gene expression-based subtyping in breast cancer. JNCI Cancer Spectr 2020; 5: pkaa087
- 115 Sestak I, Buus R, Cuzick J. et al. Comparison of the performance of 6 prognostic signatures for estrogen receptor-positive breast cancer: a secondary analysis of a randomized clinical trial. JAMA Oncol 2018; 4: 545-553
- 116 Sengupta AK, Gunda A, Malpani S. et al. Comparison of breast cancer prognostic tests CanAssist Breast and Oncotype DX. Cancer Med 2020; 9: 7810-7818
- 117 Wazir U, Mokbel K. Emerging gene-based prognostic tools in early breast cancer: first steps to personalised medicine. World J Clin Oncol 2014; 5: 795-799
- 118 Rizki H, Hillyar C, Abbassi O. et al. The utility of Oncotype DX for adjuvant chemotherapy treatment decisions in estrogen receptor-positive, human epidermal growth factor receptor 2-negative, node-negative breast cancer. Cureus 2020; 12: e7269
- 119 Torres S, Trudeau M, Gandhi S. et al. Prospective evaluation of the impact of the 21-gene recurrence score assay on adjuvant treatment decisions for women with node-positive breast cancer in Ontario, Canada. Oncologist 2018; 23: 768-775
- 120 Assi HI, Alameh IA, Khoury J. et al. Impact of commercialized genomic tests on adjuvant treatment decisions in early stage breast cancer patients. J Oncol 2020; 2020: 9238084
- 121 Gligorov J, Pivot XB, Jacot W. et al. Prospective clinical utility study of the use of the 21-gene assay in adjuvant clinical decision making in women with estrogen receptor-positive early invasive breast cancer: Results from the SWITCH Study. Oncologist 2015; 20: 873-879
- 122 Sestak I, Cuzick J, Dowsett M. et al. Prediction of late distant recurrence after 5 years of endocrine treatment: a combined analysis of patients from the Austrian breast and colorectal cancer study group 8 and arimidex, tamoxifen alone or in combination randomized trials using the PAM50 risk of recurrence score. J Clin Oncol 2015; 33: 916-922
- 123 Ohnstad HO, Borgen E, Falk RS. et al. Prognostic value of PAM50 and risk of recurrence score in patients with early-stage breast cancer with long-term follow-up. Breast Cancer Res 2017; 19: 120
- 124 Martínez Del Prado P, Alvarez-López I, Domínguez-Fernández S. et al. Clinical and economic impact of the 21-gene recurrence score assay in adjuvant therapy decision making in patients with early-stage breast cancer: pooled analysis in 4 Basque Country university hospitals. Clinicoecon Outcomes Res 2018; 10: 189-199
- 125 Hequet D, Harrissart G, Callens C. et al. Prosigna® test in clinical routine: Impact on adjuvant chemotherapy decision and medico-economic considerations in France [abstract]. In: Proceedings of the 2019 San Antonio Breast Cancer Symposium; 2019 Dec 10-14; San Antonio, TX. Philadelphia (PA): AACR. Cancer Res 2020; 80 (4 Suppl.): Abstr. P2-14-10.
- 126 de Boer RH, Baker C, Speakman D. et al. The impact of a genomic assay (Oncotype DX) on adjuvant treatment recommendations in early breast cancer. Med J Aust 2013; 199: 205-208
- 127 Syed YY. Oncotype DX Breast Recurrence Score®: A review of its use in early-stage breast cancer. Mol Diagn Ther 2020; 24: 621-632
- 128 Bartlett JM, Bayani J, Marshall A. et al. Comparing breast cancer multiparameter tests in the OPTIMA Prelim Trial: no test is more equal than the others. J Natl Cancer Inst 2016; 108: djw050
- 129 vanʼt VeerL, Dai H, van de Vijver M. et al. Gene expression profiling predicts clinical outcome of breast cancer. Nature 2002; 415: 530-536
- 130 Fan C, Oh DS, Wessels L. et al. Concordance among gene-expressionbased predictors for breast cancer. N Engl J Med 2006; 355: 560-569
- 131 Filipits M, Rudas M, Jakesz R. et al. A new molecular predictor of distant recurrence in ER-positive, HER2–negative breast cancer adds independent information to conventional clinical risk factors. Clin Cancer Res 2011; 17: 6012-6020
- 132 Zhang Y, Schnabel CA, Schroeder BE. et al. Breast cancer index identifies early-stage estrogen receptor-positive breast cancer patients at risk for early- and late-distant recurrence. Clin Cancer Res 2013; 19: 4196-4205
- 133 Bartlett JMS, Sgroi DC, Treuner K. et al. Breast Cancer Index and prediction of benefit from extended endocrine therapy in breast cancer patients treated in the Adjuvant Tamoxifen-To Offer More? (aTTom) trial. Ann Oncol 2019; 30: 1776-1783
- 134 Puppe J, Seifert T, Eichler C. et al. Genomic signatures in luminal breast cancer. Breast Care (Basel) 2020; 15: 355-365
- 135 Zhang Y, Zhou Y, Mao F. et al. Ki-67 index, progesterone receptor expression, histologic grade and tumor size in predicting breast cancer recurrence risk: a consecutive cohort study. Cancer Commun (Lond) 2020; 40: 181-193
- 136 Zhang YN, Zhou YD, Mao F. et al. Impact of the 21-gene recurrence score assay in adjuvant chemotherapy selection for node-negative, hormone receptor-positive breast cancer in the Chinese population. Neoplasma 2015; 62: 658-665
- 137 Food and Drug Administration (FDA). Clinical Trial Endpoints for the Approval of Cancer Drugs and Biologics Guidance for Industry. 2018. Accessed October 27, 2023 at:. https://www.fda.gov/media/71195/download
- 138 Delgado A, Guddati AK. Clinical endpoints in oncology – a primer. Am J Cancer Res 2021; 11: 1121-1131
- 139 Moossdorff M, van Roozendaal LM, Schipper RJ. et al. Inconsistent selection and definition of local and regional endpoints in breast cancer research. Br J Surg 2014; 101: 1657-1665
- 140 Hudis CA, Barlow WE, Costantino JP. et al. Proposal for standardized definitions for efficacy end points in adjuvant breast cancer trials: the STEEP system. J Clin Oncol 2007; 25: 2127-2132
- 141 Gourgou-Bourgade S, Cameron D, Poortmans P. et al. Guidelines for time-to-event end point definitions in breast cancer trials: results of the DATECAN initiative (Definition for the Assessment of Time-toevent Endpoints in CANcer trials). Ann Oncol 2015; 26: 873-879
- 142 Tolaney SM, Garrett-Mayer E, White J. et al. Updated standardized definitions for efficacy end points (STEEP) in adjuvant breast cancer clinical trials: STEEP Version 2.0. J Clin Oncol 2021; 39: 2720-2731
- 143 Sparano JA, Gray RJ, Makower DF. et al. Adjuvant chemotherapy guided by a 21-gene expression assay in breast cancer. N Engl J Med 2018; 379: 111-121
- 144 Kalinsky K, Barlow WE, Gralow JR. et al. 21-gene assay to inform chemotherapy benefit in node-positive breast cancer. N Engl J Med 2021; 385: 2336-2347
- 145 Stein RC, Makris A, MacPherson IR. et al. Optima: Optimal personalised treatment of early breast cancer using multi-parameter analysis, an international randomized trial of tumor gene expression test-directed chemotherapy treatment in a largely node-positive population. J Clin Oncol 2021; 39 (15) TPS599
- 146 OPTIMA. Optimal Personalised Treatment of early breast cancer using multi-parameter analysis. Accessed December 21, 2023 at:. http://optimabreaststudy.com/
- 147 Gluz O, Hofmann D, Würstlein R. et al. Genomic profiling in luminal breast cancer. Breast Care (Basel) 2013; 8: 414-422
- 148 Schneeweiss A, Bauerfeind I, Fehm T. et al. Therapy algorithms for the diagnosis and treatment of patients with early and advanced breast cancer. Breast Care (Basel) 2020; 15: 608-618
- 149 Krop I, Ismaila N, Andre F. et al. Use of biomarkers to guide decisions on adjuvant systemic therapy for women with early-stage invasive breast cancer: American Society of Clinical Oncology Clinical Practice Guideline Focused Update. J Clin Oncol 2017; 35: 2838-2847
- 150 Giorgi RossiP, Lebeau A, Canelo-Aybar C. et al. Recommendations from the European Commission Initiative on Breast Cancer for multigene testing to guide the use of adjuvant chemotherapy in patients with early breast cancer, hormone receptor positive, HER-2 negative. Br J Cancer 2021; 124: 1503-1512
- 151 NICE. Early and locally advanced breast cancer: diagnosis and management. 2018. Accessed October 27, 2023 at:. http://www.nice.org.uk/guidance/ng101
- 152 NICE. Tumour profiling tests to guide adjuvant chemotherapy decisions in early breast cancer. 2018. Accessed October 27, 2023 at:. www.nice.org.uk/guidance/dg34
- 153 Blanchette P, Sivajohanathan D, Bartlett J. et al. Clinical utility of multigene profiling assays in early-stage invasive breast cancer: an Ontario Health (Cancer Care Ontario) Clinical Practice Guideline. Curr Oncol 2022; 29: 2599-2615
- 154 Ayala de la Peña F, Andrés R, Garcia-Sáenz JA. et al. SEOM clinical guidelines in early stage breast cancer (2018). Clin Transl Oncol 2019; 21: 18-30