Klin Monbl Augenheilkd 2024; 241(07): 863-880
DOI: 10.1055/a-2305-5053
CME-Fortbildung

Filtrierende Glaukomchirurgie – Verfahren mit Bildung eines Filterkissens

Glaucoma Filtration Surgery – Bleb-forming Procedures
Dirk Bahlmann
,
Christian van Oterendorp

Die Filtrationschirurgie zählt zu den ältesten Prinzipien der Glaukomchirurgie. Ergänzend zur Trabekulektomie wurden neuere Stent-basierte Verfahren wie der Preserflo-Microshunt und der XEN-Stent entwickelt. Dieser Artikel stellt diese drei filtrierenden Operationstechniken vor. Er fasst die Operationstechnik, Daten zur Effektivität sowie Art und Häufigkeit von Komplikationen zusammen und versucht, sie soweit möglich miteinander zu vergleichen.

Abstract

Glaucoma filtration surgery has been a standard surgical therapy for decades. An increasing knowledge about wound healing processes in the eye, the introduction of antimetabolite treatment and continuous improvements of the surgical technique helped making trabeculectomy – the prototype filtration surgery – a very effective therapeutic tool. However, best results will only be regularly achieved with a high level of experience and time dedicated to postoperative follow-up. Furthermore, the potential for severe early and late complications still remains high. Thus, novel stent-based filtration surgery approaches, such as the Preserflo and the XEN shunt have been introduced. This review presents these three bleb-forming filtration procedures, covering the basic principles of surgical technique, data on effectivity as well as complications.

Kernaussagen
  • Die Trabekulektomie ist ein sehr effektiver Therapieansatz mit hohem Drucksenkungspotenzial, der aber ein hohes Maß an Erfahrung und eine intensive Nachsorge erfordert.

  • Die Antimetaboliten leisten einen entscheidenden Beitrag zur hohen Effektivität, bergen aber aufgrund ihrer geringen therapeutischen Breite ein hohes Nebenwirkungspotenzial.

  • Der Preserflo-Microshunt ist als Ab-externo-Verfahren hinsichtlich der Behandlung des Filtrationsbereichs und in seiner Effektivität sehr nah an der Trabekulektomie, vereinfacht aber durch den Stent den intraoperativen Ablauf und meist auch die postoperative Nachsorge.

  • Beim XEN-Gel-Stent liegt mit dem Ab-interno-Ansatz der Fokus auf noch schnellerer und weniger invasiver Operation. Hier geht die fehlende chirurgische Öffnung des Filtrationsraums aber auch mit einer hohen Revisionsrate und einer wahrscheinlich geringeren Drucksenkung im Vergleich zur Trabekulektomie einher. Der Mangel aussagekräftiger prospektiver vergleichender Studien erschwert allerdings den direkten Vergleich.

  • Ein Vorteil beider Stent-basierter Verfahren ist der im Revisionsfall in der Regel noch durchgängige Stent.

  • Als Nachteile sind die hohen Kosten, implantat-spezifische Komplikationen wie Dislokation sowie Extrusion und das Risiko für bislang noch unbekannte Spätfolgen wie ein möglicher Endothelzellverlust zu nennen.



Publication History

Article published online:
24 May 2024

© 2024. Thieme. All rights reserved.

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • Literatur

  • 1 Watson PG, Barnett F. Effectiveness of trabeculectomy in glaucoma. Am J Ophthalmol 1975; 79: 831-845
  • 2 Sugar HS. Some recent advances in the surgery of glaucoma. Bull N Y Acad Med 1963; 39: 3-20
  • 3 Cairns JE. Trabeculectomy. Preliminary report of a new method. Am J Ophthalmol 1968; 66: 673-679
  • 4 Khaw PT, Bouremel Y, Brocchini S. et al. The control of conjunctival fibrosis as a paradigm for the prevention of ocular fibrosis-related blindness. “Fibrosis has many friends”. Eye (Lond) 2020; 34: 2163-2174
  • 5 Schlunck G, Meyer-ter-Vehn T, Klink T. et al. Conjunctival fibrosis following filtering glaucoma surgery. Exp Eye Res 2016; 142: 76-82
  • 6 Anonymous Five-year follow-up of the Fluorouracil Filtering Surgery Study. The Fluorouracil Filtering Surgery Study Group. Am J Ophthalmol 1996; 121: 349-366
  • 7 Bell K, de Padua Soares Bezerra B, Mofokeng M. et al. Learning from the past: Mitomycin C use in trabeculectomy and its application in bleb-forming minimally invasive glaucoma surgery. Surv Ophthalmol 2021; 66: 109-123
  • 8 Khaw PT, Chiang M, Shah P. et al. Enhanced trabeculectomy: the Moorfields Safer Surgery System. Dev Ophthalmol 2012; 50: 1-28
  • 9 Gedde SJ, Feuer WJ, Lim KS. et al. Treatment outcomes in the Primary Tube Versus Trabeculectomy Study after 5 years of follow-up. Ophthalmology 2022; 129: 1344-1356
  • 10 Islamaj E, Wubbels RJ, de Waard PWT. Primary Baerveldt Versus Trabeculectomy Study after 5 years of follow-up. Acta Ophthalmol 2020; 98: 400-407
  • 11 Musch DC, Gillespie BW, Niziol LM. et al. Intraocular pressure control and long-term visual field loss in the Collaborative Initial Glaucoma Treatment Study. Ophthalmology 2011; 118: 1766-1773
  • 12 Gedde SJ, Schiffman JC, Feuer WJ. et al. Treatment outcomes in the Tube Versus Trabeculectomy (TVT) Study after five years of follow-up. Am J Ophthalmol 2012; 153: 789-803.e2
  • 13 Suñer IJ, Greenfield DS, Miller MP. et al. Hypotony maculopathy after filtering surgery with mitomycin C. Incidence and treatment. Ophthalmology 1997; 104: 207-214 discussion 214–215
  • 14 Budenz DL, Barton K, Tseng SC. Amniotic membrane transplantation for repair of leaking glaucoma filtering blebs. Am J Ophthalmol 2000; 130: 580-588
  • 15 Burnstein AL, WuDunn D, Knotts SL. et al. Conjunctival advancement versus nonincisional treatment for late-onset glaucoma filtering bleb leaks. Ophthalmology 2002; 109: 71-75
  • 16 Agnifili L, Figus M, Sacchi M. et al. Managing the ocular surface after glaucoma filtration surgery: an orphan topic. Graefes Arch Clin Exp Ophthalmol 2023;
  • 17 Khaw PT, Doyle JW, Sherwood MB. et al. Prolonged localized tissue effects from 5-minute exposures to fluorouracil and mitomycin C. Arch Ophthalmol 1993; 111: 263-267
  • 18 AGIS Investigators. The Advanced Glaucoma Intervention Study (AGIS): 11. Risk factors for failure of trabeculectomy and argon laser trabeculoplasty. Am J Ophthalmol 2002; 134: 481-498
  • 19 Nguyen AH, Fatehi N, Romero P. et al. Observational outcomes of initial trabeculectomy with mitomycin C in patients of African descent vs. patients of European descent: five-year results. JAMA Ophthalmol 2018; 136: 1106-1113
  • 20 Ho W-T, Chen T-C, Chou S-F. et al. Dexamethasone modifies mitomycin C-triggered interleukin-8 secretion in isolated human Tenonʼs capsule fibroblasts. Exp Eye Res 2014; 124: 86-92
  • 21 Bates DO. Vascular endothelial growth factors and vascular permeability. Cardiovasc Res 2010; 87: 262-271
  • 22 OʼNeill EC, Qin Q, Van Bergen NJ. et al. Antifibrotic activity of bevacizumab on human Tenonʼs fibroblasts in vitro. Invest Ophthalmol Vis Sci 2010; 51: 6524-6532
  • 23 Fischer CV, Mans V, Horn M. et al. The antiproliferative effect of bevacizumab on human tenon fibroblasts is not mediated by vascular endothelial growth factor inhibition. Invest Ophthalmol Vis Sci 2016; 57: 4970-4977
  • 24 Vandewalle E, Abegão Pinto L, Van Bergen T. et al. Intracameral bevacizumab as an adjunct to trabeculectomy: a 1-year prospective, randomised study. Br J Ophthalmol 2014; 98: 73-78
  • 25 CAT-152 Trabeculectomy Study Group. Grehn F, Holló G. et al. Factors affecting the outcome of trabeculectomy: an analysis based on combined data from two phase III studies of an antibody to transforming growth factor beta2, CAT-152. Ophthalmology 2007; 114: 1831-1838
  • 26 Kirwan JF, Rennie C, Evans JR. Beta radiation for glaucoma surgery. Cochrane Database Syst Rev 2012; (2012) CD003433
  • 27 Pinchuk L. The use of polyisobutylene-based polymers in ophthalmology. Bioact Mater 2021; 10: 185-194
  • 28 Batlle JF, Corona A, Albuquerque R. Long-term results of the PRESERFLO MicroShunt in patients with primary open-angle glaucoma from a single-center nonrandomized study. J Glaucoma 2021; 30: 281-286
  • 29 Batlle JF, Fantes F, Riss I. et al. Three-year follow-up of a novel aqueous humor MicroShunt. J Glaucoma 2016; 25: e58-e65
  • 30 Sadruddin O, Pinchuk L, Angeles R. et al. Ab externo implantation of the MicroShunt, a poly (styrene-block-isobutylene-block-styrene) surgical device for the treatment of primary open-angle glaucoma: a review. Eye Vis (Lond) 2019; 6: 36
  • 31 Pawiroredjo SSM, Bramer WM, Pawiroredjo ND. et al. Efficacy of the PRESERFLO MicroShunt and a meta-analysis of the literature. J Clin Med 2022; 11: 7149
  • 32 Ibarz Barberá M, Martínez-Galdón F, Caballero-Magro E. et al. Efficacy and safety of the Preserflo Microshunt with mitomycin C for the treatment of open angle glaucoma. J Glaucoma 2022; 31: 557-566
  • 33 Nobl M, Freissinger S, Kassumeh S. et al. One-year outcomes of microshunt implantation in pseudoexfoliation glaucoma. PLoS One 2021; 16: e0256670
  • 34 Quaranta L, Micheletti E, Carassa R. et al. Efficacy and safety of PreserFlo® MicroShunt after a failed trabeculectomy in eyes with primary open-angle glaucoma: a retrospective study. Adv Ther 2021; 38: 4403-4412
  • 35 Rabiolo A, Toscani R, Sacchi M. et al. Risk factors for failure in glaucoma patients undergoing microshunt implantantion. Am J Ophthalmol 2024; 259: 117-130
  • 36 Tanner A, Haddad F, Fajardo-Sanchez J. et al. One-year surgical outcomes of the PreserFlo MicroShunt in glaucoma: a multicentre analysis. Br J Ophthalmol 2023; 107: 1104-1111
  • 37 Triolo G, Wang J, Aguilar-Munoa S. et al. Preserflo microshunt implant for the treatment of refractory uveitic glaucoma: 36-month outcomes. Eye (Lond) 2023; 37: 2535-2541
  • 38 Ruparelia S, Darwich R, Eadie BD. PreserFlo Microshunt for the management of intraocular pressure elevation in iridocorneal endothelial syndrome. Am J Ophthalmol Case Rep 2023; 32: 101932
  • 39 Bøhler AD, Traustadóttir VD, Hagem AM. et al. Hypotony in the early postoperative period after MicroShunt implantation versus trabeculectomy: A registry study. Acta Ophthalmol 2024; 102: 186-191
  • 40 Pillunat KR, Herber R, Haase MA. et al. PRESERFLO MicroShunt versus trabeculectomy: first results on efficacy and safety. Acta Ophthalmol 2022; 100: e779-e790
  • 41 Baker ND, Barnebey HS, Moster MR. et al. Ab-externo MicroShunt versus trabeculectomy in primary open-angle glaucoma: one-year results from a 2-year randomized, multicenter study. Ophthalmology 2021; 128: 1710-1721
  • 42 Micheletti E, Riva I, Bruttini C. et al. A case of delayed-onset hemorrhagic choroidal detachment after PreserFlo Microshunt implantation in a glaucoma patient under anticoagulant therapy. J Glaucoma 2020; 29: e87-e90
  • 43 Lupardi E, Laffi GL, Moramarco A. et al. Systematic Preserflo MicroShunt intraluminal stenting for hypotony prevention in highly myopic patients: A Comparative Study. J Clin Med 2023; 12: 1677
  • 44 Strzalkowska A, Strzalkowski P, Hoffmann EM. et al. Outcomes of open bleb revision after PreserFlo MicroShunt failure in patients with glaucoma. J Glaucoma 2023; 32: 681-685
  • 45 Bunod R, Robin M, Buffault J. et al. PreserFlo MicroShunt® exposure: a case series. BMC Ophthalmol 2021; 21: 273
  • 46 Fahy ET, Ho H, Dukht U. et al. Conjunctival erosion following a PRESERFLO® MicroShunt procedure. Am J Ophthalmol Case Rep 2022; 25: 101347
  • 47 Ibarz-Barberá M, Morales-Fernández L, Corroto-Cuadrado A. et al. Corneal endothelial cell loss after PRESERFLO MicroShunt implantation in the anterior chamber: anterior segment OCT tube location as a risk factor. Ophthalmol Ther 2022; 11: 293-310
  • 48 Chamard C, Hammoud S, Bluwol E. et al. Endothelial cell loss 5 years after Preserflo MicroShunt implantation: About two cases. Am J Ophthalmol Case Rep 2022; 25: 101238
  • 49 Chen X, Liang Z, Yang K. et al. The outcomes of XEN Gel stent implantation: a systematic review and meta-analysis. Front Med 2022; 9: 804847
  • 50 Busch T, Skiljic D, Rudolph T. et al. Four-Year Outcome of XEN 45 gel stent implantation in a Swedish population. Clin Ophthalmol 2023; 17: 1897-1910
  • 51 Grover DS, Flynn WJ, Bashford KP. et al. Performance and safety of a new ab interno gelatin stent in refractory glaucoma at 12 months. Am J Ophthalmol 2017; 183: 25-36
  • 52 Do A, McGlumphy E, Shukla A. et al. Comparison of clinical outcomes with open versus closed conjunctiva implantation of the XEN45 Gel Stent. Ophthalmol Glaucoma 2021; 4: 343-349
  • 53 Yang S-A, Ciociola EC, Mitchell W. et al. Effectiveness of micro-invasive glaucoma surgery in the United States: IRIS® Registry Analysis 2013–2019. Ophthalmology 2023; 130: 242
  • 54 Rauchegger T, Angermann R, Willeit P. et al. Two-year outcomes of minimally invasive XEN Gel Stent implantation in primary open-angle and pseudoexfoliation glaucoma. Acta Ophthalmol 2021; 99: 369-375
  • 55 Midha N, Rao HL, Mermoud A. et al. Identifying the predictors of needling after XEN Gel implant. Eye (Lond) 2019; 33: 353-357
  • 56 Lenzhofer M, Strohmaier C, Sperl P. et al. Effect of the outer stent position on efficacy after minimally invasive transscleral glaucoma gel stent implantation. Acta Ophthalmol 2019; 97: e1105-e1111
  • 57 Steiner S, Resch H, Kiss B. et al. Needling and open filtering bleb revision after XEN-45 implantation–a retrospective outcome comparison. Graefes Arch Clin Exp Ophthalmol 2021; 259: 2761-2770
  • 58 Galimi ME, Weller JM, Kruse FE. et al. Risk factors for ocular hypotony after XEN Gel Stent implantation. Graefes Arch Clin Exp Ophthalmol 2023; 261: 769-778
  • 59 Burggraaf-Sánchez de las Matas R, Such-Irusta L, Alfonso-Muñoz EA. et al. Late-onset endophthalmitis after XEN45 ® implantation: a retrospective case series and literature review. J Curr Glaucoma Pract 2021; 15: 153-160
  • 60 Gillmann K, Bravetti GE, Rao HL. et al. Impact of phacoemulsification combined with XEN Gel Stent implantation on corneal endothelial cell density: 2-year results. J Glaucoma 2020; 29: 155-160
  • 61 Oddone F, Roberti G, Posarelli C. et al. Endothelial cell density after XEN implant surgery: short-term data from the Italian XEN Glaucoma Treatment Registry (XEN-GTR). J Glaucoma 2021; 30: 559-565
  • 62 Lenzhofer M, Motaabbed A, Colvin HP. et al. Five-year follow-up of corneal endothelial cell density after transscleral ab interno glaucoma gel stent implantation. Graefes Arch Clin Exp Ophthalmol 2023; 261: 1073-1082
  • 63 Schargus M, Theilig T, Rehak M. et al. Outcome of a single XEN microstent implant for glaucoma patients with different types of glaucoma. BMC Ophthalmol 2020; 20: 490
  • 64 Lin MM, Morgan WH, Kolomeyer NN. et al. XEN Gel Stent to treat ICE syndrome: 4 cases. J Glaucoma 2019; 28: 1090-1094
  • 65 Mendel L, Eremenko R, Naveh LZ. et al. First XEN implantation in Axenfeld-Rieger syndrome: A case report and literature review. Am J Ophthalmol Case Rep 2022; 26: 101486
  • 66 Zhou Y, Philip AM, Chikovsky MN. et al. Implantation of XEN gel stent in a patient with ocular cicatricial pemphigoid. Am J Ophthalmol Case Rep 2023; 29: 101801
  • 67 Wagner FM, Schuster AK-G, Emmerich J. et al. Efficacy and safety of XEN®-Implantation vs. trabeculectomy: Data of a “real-world” setting. PloS One 2020; 15: e0231614
  • 68 Marcos Parra MT, Salinas López JA, López Grau NS. et al. XEN implant device versus trabeculectomy, either alone or in combination with phacoemulsification, in open-angle glaucoma patients. Graefes Arch Clin Exp Ophthalmol 2019; 257: 1741-1750
  • 69 Theilig T, Rehak M, Busch C. et al. Comparing the efficacy of trabeculectomy and XEN gel microstent implantation for the treatment of primary open-angle glaucoma: a retrospective monocentric comparative cohort study. Sci Rep 2020; 10: 19337
  • 70 Yang X, Zhao Y, Zhong Y. et al. The efficacy of XEN gel stent implantation in glaucoma: a systematic review and meta-analysis. BMC Ophthalmol 2022; 22: 305
  • 71 Wagner FM, Schuster AK, Munder A. et al. Comparison of subconjunctival microinvasive glaucoma surgery and trabeculectomy. Acta Ophthalmol 2022; 100: e1120-e1126
  • 72 Scheres LMJ, Kujovic-Aleksov S, Ramdas WD. et al. XEN® Gel Stent compared to PRESERFLO MicroShunt implantation for primary open-angle glaucoma: two-year results. Acta Ophthalmol 2021; 99: e433-e440