Synthesis 2024; 56(19): 2963-2972
DOI: 10.1055/a-2307-8257
short review

Transition-Metal-Catalyzed Direct Arylation of Ammonia

Geyang Song
,
Jianyang Dong
,
Jiameng Song
,
Gang Li
,
Dong Xue
This research is supported by the National Natural Science Foundation of China (22171174), the Fundamental Research Funds for the Central Universities (GK202207015, GK202401008), the Natural Science Foundation of Shaanxi Province (2024JC-YBQN-0075), the China Postdoctoral Science Foundation (2023M732165), the Shaanxi Province Postdoctoral Science Foundation (2023BSHYDZZ107), the Young Talent Fund of Association for Science and Technology in Shaanxi, China (20240606).


Abstract

In the past few decades, transition-metal-catalyzed direct amination of aryl halides with ammonia has attracted significant attention from chemists because of its broad substrate scope, good functional group compatibility, and high reaction selectivity. Herein, recent examples of transition-metal-catalyzed syntheses of aniline derivatives starting from aryl halides are reviewed.

1 Introduction

2 Heat-Driven Transition-Metal-Catalyzed Amination of Aryl Electrophiles

2.1 Palladium-Catalyzed Amination

2.2 Copper-Catalyzed Amination

2.3 Nickel-Catalyzed Amination

3 Light-Driven Transition-Metal-Catalyzed Amination of Aryl Electrophiles

4 Conclusion and Outlook



Publication History

Received: 11 March 2024

Accepted after revision: 16 April 2024

Accepted Manuscript online:
16 April 2024

Article published online:
25 April 2024

© 2024. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

    • 1a Li K, Andersen SZ, Statt MJ, Saccoccio M, Bukas VJ, Krempl K, Sažinas R, Pedersen JB, Shadravan V, Zhou Y, Chakraborty D, Kibsgaard J, Vesborg PC. K, Nørskov JK, Chorkendorff I. Science 2021; 374: 1593
    • 1b Ashida Y, Arashiba K, Nakajima K, Nishibayashi Y. Nature 2019; 568: 536
  • 2 Roundhill DM. Chem. Rev. 1992; 92: 1
  • 3 Yan G, Yang M. Org. Biomol. Chem. 2013; 11: 2554
    • 4a Orlandi M, Brenna D, Harms R, Jost S, Benaglia M. Org. Process Res. Dev. 2018; 22: 430
    • 4b Formenti D, Ferretti F, Scharnagl FK, Beller M. Chem. Rev. 2019; 119: 2611
  • 5 Lim J, Fernández CA, Lee SW, Hatzell MC. ACS Energy Lett. 2021; 6: 3676
    • 6a Schranck J, Tlili A. ACS Catal. 2018; 8: 405
    • 6b Klinkenberg JL, Hartwig JF. Angew. Chem. Int. Ed. 2011; 50: 86
    • 7a Sambiagio C, Marsden SP, Blacker AJ, McGowan PC. Chem. Soc. Rev. 2014; 43: 3525
    • 7b Bhunia S, Goroba Pawar G, Vijay Kumar S, Jiang Y, Ma D. Angew. Chem. Int. Ed. 2017; 56: 16136
    • 8a Ruiz-Castillo P, Buchwald SL. Chem. Rev. 2016; 116: 12564
    • 8b Dorel R, Grugel CP, Haydl AM. Angew. Chem. Int. Ed. 2019; 58: 17118
    • 9a Grasa GA, Viciu MS, Huang J, Nolan SP. J. Org. Chem. 2001; 66: 7729
    • 9b Lee S, Jorgensen M, Hartwig JF. Org. Lett. 2001; 3: 2729
    • 9c Ikawa T, Barder TE, Biscoe MR, Buchwald SL. J. Am. Chem. Soc. 2007; 129: 13001
    • 9d Thakur KG, Srinivas KS, Chiranjeevi K, Sekar G. Green Chem. 2011; 13: 2326
    • 9e Vijeta A, Casadevall C, Reisner E. Angew. Chem. Int. Ed. 2022; 61: e202203176
    • 10a Bariwal J, Van der Eycken EV. Chem. Soc. Rev. 2013; 42: 9283
    • 10b Forero-Cortés PA, Haydl AM. Org. Process Res. Dev. 2019; 23: 1478
  • 12 Green RA, Hartwig JF. Org. Lett. 2014; 16: 4388
  • 13 Klinkenberg JL, Hartwig JF. J. Am. Chem. Soc. 2010; 132: 11830
  • 14 Surry DS, Buchwald SL. J. Am. Chem. Soc. 2007; 129: 10354
  • 15 Cheung CW, Surry DS, Buchwald SL. Org. Lett. 2013; 15: 3734
  • 16 Schulz T, Torborg C, Enthaler S, Schäffner B, Dumrath A, Spannenberg A, Neumann H, Börner A, Beller M. Chem. Eur. J. 2009; 15: 4528
  • 17 Dumrath A, Lübbe C, Neumann H, Jackstell R, Beller M. Chem. Eur. J. 2011; 17: 9599
  • 18 Lundgren RJ, Sappong-Kumankumah A, Stradiotto M. Chem. Eur. J. 2010; 16: 1983
  • 19 Lundgren RJ, Peters BD, Alsabeh PG, Stradiotto M. Angew. Chem. Int. Ed. 2010; 49: 4071
  • 20 Alsabeh PG, Lundgren RJ, McDonald R, Johansson Seechurn CC. C, Colacot TJ, Stradiotto M. Chem. Eur. J. 2013; 19: 2131
  • 21 Lombardi C, Day J, Chandrasoma N, Mitchell D, Rodriguez MJ, Farmer JL, Organ MG. Organometallics 2017; 36: 251
  • 22 Lindley J. Tetrahedron 1984; 40: 1433
    • 23a Evano G, Blanchard N, Toumi M. Chem. Rev. 2008; 108: 3054
    • 23b Dai L. Prog. Chem. 2018; 30: 1257
    • 23c Cai Q, Zhou W. Chin. J. Chem. 2020; 38: 879
    • 23d Yang Q, Zhao Y, Ma D. Org. Process Res. Dev. 2022; 26: 1690
  • 24 Lang F, Zewge D, Houpis IN, Volante RP. Tetrahedron Lett. 2001; 42: 3251
  • 25 Xu H, Wolf C. Chem. Commun. 2009; 3035
  • 26 Wu X.-F, Darcel C. Eur. J. Org. Chem. 2009; 4753
  • 27 Fantasia S, Windisch J, Scalone M. Adv. Synth. Catal. 2013; 355: 627
  • 28 Wang D, Cai Q, Ding K. Adv. Synth. Catal. 2009; 351: 1722
  • 29 Meng F, Zhu X, Li Y, Xie J, Wang B, Yao J, Wan Y. Eur. J. Org. Chem. 2010; 6149
  • 30 Zeng X, Huang W, Qiu Y, Jiang S. Org. Biomol. Chem. 2011; 9: 8224
  • 31 Thakur KG, Ganapathy D, Sekar G. Chem. Commun. 2011; 47: 5076
  • 32 Huang M, Wang L, Zhu X, Mao Z, Kuang D, Wan Y. Eur. J. Org. Chem. 2012; 4897
  • 33 Quan Z, Xia H, Zhang Z, Da Y, Wang X. Chin. J. Chem. 2013; 31: 501
  • 34 Yang B, Liao L, Zeng Y, Zhu X, Wan Y. Catal. Commun. 2014; 45: 100
  • 35 Elmkaddem MK, Fischmeister C, Thomas CM, Renaud J.-L. Chem. Commun. 2010; 46: 925
  • 36 Wu Z, Jiang Z, Wu D, Xiang H, Zhou X. Eur. J. Org. Chem. 2010; 1854
  • 37 Kim J, Chang S. Chem. Commun. 2008; 3052
  • 38 Xia N, Taillefer M. Angew. Chem. Int. Ed. 2009; 48: 337
  • 39 Jiang L, Lu X, Zhang H, Jiang Y, Ma D. J. Org. Chem. 2009; 74: 4542
  • 40 Fan M, Zhou W, Jiang Y, Ma D. Org. Lett. 2015; 17: 5934
  • 41 Gao J, Bhunia S, Wang K, Gan L, Xia S, Ma D. Org. Lett. 2017; 19: 2809
  • 42 Borzenko A, Rotta-Loria NL, MacQueen PM, Lavoie CM, McDonald R, Stradiotto M. Angew. Chem. Int. Ed. 2015; 54: 3773
  • 43 Lavoie CM, MacQueen PM, Rotta-Loria NL, Sawatzky RS, Borzenko A, Chisholm AJ, Hargreaves BK. V, McDonald R, Ferguson MJ, Stradiotto M. Nat. Commun. 2016; 7: 11073
  • 44 Lavoie CM, Tassone JP, Ferguson MJ, Zhou Y, Johnson ER, Stradiotto M. Organometallics 2018; 37: 4015
  • 45 Green RA, Hartwig JF. Angew. Chem. Int. Ed. 2015; 54: 3768
    • 47a Prier CK, Rankic DA, MacMillan DW. C. Chem. Rev. 2013; 113: 5322
    • 47b Twilton J, Le C, Zhang P, Shaw MH, Evans RW, MacMillan DW. C. Nat. Rev. Chem. 2017; 1: 0052
    • 47c Chan AY, Perry IB, Bissonnette NB, Buksh BF, Edwards GA, Frye LI, Garry OL, Lavagnino MN, Li BX, Liang Y. Chem. Rev. 2022; 122: 1485
    • 48a Li G, Yang L, Liu J.-J, Zhang W, Cao R, Wang C, Zhang Z, Xiao J, Xue D. Angew. Chem. Int. Ed. 2021; 60: 5230
    • 48b Song G, Yang L, Li J.-S, Tang W.-J, Zhang W, Cao R, Wang C, Xiao J, Xue D. Angew. Chem. Int. Ed. 2021; 60: 21536
    • 48c Song G, Nong D.-Z, Li J.-S, Li G, Zhang W, Cao R, Wang C, Xiao J, Xue D. J. Org. Chem. 2022; 87: 10285
    • 48d Li G, Wang C, Xiao J, Xue D. Chem. Eur. J. 2023; e202300458
    • 48e Li F, Xiong W, Song G, Yan Y, Li G, Wang C, Xiao J, Xue D. Org. Lett. 2023; 25: 3287
  • 49 Vijeta A, Casadevall C, Reisner E. Angew. Chem. Int. Ed. 2022; 61: e202203176
  • 50 Song G, Nong D.-Z, Li Q, Yan Y, Li G, Fan J, Zhang W, Cao R, Wang C, Xiao J, Xue D. ACS Catal. 2022; 12: 15590
  • 51 Song G, Song J, Li Q, Nong D.-Z, Dong J, Li G, Fan J, Wang C, Xiao J, Xue D. Angew. Chem. Int. Ed. 2024; 63: e202314355
  • 52 Kancherla R, Muralirajan K, Dutta S, Pal K, Li B, Maity B, Cavallo L, Rueping M. Angew. Chem. Int. Ed. 2024; 63: e202314508