Klinische Neurophysiologie
DOI: 10.1055/a-2307-8464
Übersicht

Therapeutische Neurostimulation bei Epilepsien

Therapeutic Neurostimulation in Epilepsy
Andreas Schulze-Bonhage
1   Epileptology, University Medical Center Freiburg, Freiburg, Germany
› Author Affiliations

Zusammenfassung

Das Spektrum möglicher Neurostimulationsbehandlungen von Epilepsien hat sich in den letzten Jahren deutlich erweitert. Nach Einführung der Vagusnervstimulation 1994 haben sich mit der Stimulation der anterioren Thalamuskerne, in den USA der responsiven intrakranielle Fokusstimulation und zuletzt in Europa der epicraniellen Fokalen Cortexstimulation neue klinische Behandlungsansätze entwickelt. In dieser Übersichtsarbeit werden die den Stimulationsbehandlungen zugrunde liegenden Prinzipien dargestellt, klinische Aspekte und Ergebnisse der einzelnen Methoden dargestellt und abschließend eine Übersicht zu Indikationsstellungen gegeben.

Abstract

The spectrum of treatment for neurostimulation has expanded considerably during recent years. Following the introduction of vagus nerve stimulation in 1994, new treatment approaches have been developed, these being stimulation of the anterior nuclei of the thalamus, responsive neurostimulation in the US, and epicranial focal cortex stimulation in Europe. In this review, principles underlying neurostimulatory approaches are described, clinical aspects and results of the individual methods are discussed and an overview of indications for their use presented.



Publication History

Article published online:
02 July 2024

© 2024. Thieme. All rights reserved.

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • Literatur

  • 1 Schulze-Bonhage A. Brain stimulation as a neuromodulatory epilepsy therapy. Seizure 2017; 44: 169-175
  • 2 White M, Mackay M, Whittaker R. Taking Optogenetics into the Human Brain: Opport-unities and Challenges in Clinical Trial Design. Open Access J Clin Trials. 2020: 33-41
  • 3 Espinoza RT, Kellner CH. Electroconvulsive therapy. N Engl J Med 2022; 386: 667-672
  • 4 Lopes da Silva FH, Kamphuis W, Titulaer M. et al. An experimental model of progressive epilepsy: the development of kindling of the hippocampus of the rat. Ital J Neurol Sci 1995; 16: 45-57
  • 5 Lesser RP, Kim SH, Beyderman L. et al. Brief bursts of pulse stimulation terminate afterdischarges caused by cortical stimulation. Neurology 1999; 53: 2073-2081
  • 6 Motamedi GK, Lesser RP, Miglioretti DL. et al. Optimizing parameters for terminating cortical afterdischarges with pulse stimulation. Epilepsia 2002; 43: 836-884
  • 7 RNS System in Epilepsy Study Group. Morrell MJ. Responsive cortical stimulation for the treatment of medically intractable partial epilepsy. Neurology 2011; 27: 1295-1304
  • 8 Kravalis K, Schulze-Bonhage A. PIMIDES I: a pilot study to assess the feasibility of patient-controlled neurostimulation with the EASEE® system to treat medically refractory focal epilepsy. Neurol Res Pract 2020; 2: 15
  • 9 Hirsch M, Coenen VA, Schulze-Bonhage A. Termination of seizures by ictal transcranial focal cortex stimulation. Epilepsia Open 2023; 8: 673-677
  • 10 Albensi BC, Ata G, Schmidt E. et al. Activation of long-term synaptic plasticity causes suppression of epileptiform activity in rat hippocampal slices. Brain Res 2004; 998: 56-64
  • 11 Toprani S, Durand DM. Long-lasting hyperpolarization underlies seizure reduction by low frequency deep brain electrical stimulation. J Physiol 2013; 591: 5765-5790
  • 12 Manzouri F, Meisel C, Kunz L. et al. Low-frequency electrical stimulation reduces cortical excitability in the human brain. Neuroimage Clin 2021; 31: 102778
  • 13 Lim SN, Lee CY, Lee ST. et al. Low and high frequency hippocampal stimulation for drug-resistant mesial temporal lobe epilepsy. Neuromodulation 2016; 19: 365-372
  • 14 Alcala-Zermeno JL, Starnes K, Gregg NM. et al. Responsive neurostimulation with low-frequency stimulation. Epilepsia 2023; 64: e16-e22
  • 15 Schulze-Bonhage A. Epicranial focal cortex stimulation with the EASEE system. In: Rao V (ed.) Neurostimulation for Epilepsy. Advances, Applications and Opportunities. Academic Press; London: 2023. pp 161-174
  • 16 Bindman LJ, Lippold OC, Redferan JW. The action of brief polarizing currents on the cerebral cortex of the rat (1) during current flow and (2) in the production of long-lasting after-effects. J Physiol 1964; 172: 369-382
  • 17 Bikson M, Inoue M, Akiyama H. et al. Effects of uniform extracellular DC electric fields on excitability in rat hippocampal slices in vitro. J Physiol 2004; 557: 175-190
  • 18 Stagg CJ, Antal A, Nitsche MA. Physiology of transcranial direct current stimulation. J ECT 2018; 34: 144-152
  • 19 Schulze-Bonhage A, Nitsche M, Rotter S. et al Neurostimulation targeting the epileptic focus: current understanding and perspectives for treatment. Seizure Apr 2024 117: 183-192
  • 20 Elger CE, Hoppe C. Diagnostic challenges in epilepsy: seizure under-reporting and seizure detection. Lancet Neurol 2018; 17: 279-288
  • 21 Schulze-Bonhage A, Richardson MP, Brandt A. et al. Cyclical underreporting of seizures in patient-based seizure documentation. Ann Clin Transl Neurol 2023; 10: 1863-1872
  • 22 Van Haerents S, Chang BS, Rotenberg A. et al. Noninvasive brain stimulation in epilepsy. J Clin Neurophysiol 2020; 37: 118-130
  • 23 Barker AT, Jalinous R, Freeston IL. Non-invasive magnetic stimulation of human motor cortex. Lancet 1985; 1: 1106-1107
  • 24 Walton D, Spencer DC, Nevitt SJ. et al. Transcranial magnetic stimulation for the treatment of epilepsy. Cochrane Database Syst Rev 2021; 4: CD011025
  • 25 Liu A, Pang T, Herman S. et al. Transcranial magnetic stimulation for refractory focal status epilepticus in the intensive care unit. Seizure – Eur J Epilepsy 2013; 22: 893-896
  • 26 Bikson M, Esmaeilpour Z, Adair D. et al. Transcranial electrical stimulation nomenclature. Brain Stimul 2019; 12: 1349-1366
  • 27 Nitsche MA, Paulus W. Excitability changes induced in the human motor cortex by weak transcranial direct current stimulation. J Physiol 2000; 527: 633-639
  • 28 Nitsche MA, Paulus W. Noninvasive brain stimulation protocols in the treatment of epilepsy: current state and perspectives. Neurotherapeutics 2009; 2: 244-250
  • 29 Gandiga PC, Hummel FC, Cohen LG. Transcranial DC stimulation (tDCS): a tool for double-blind sham-controlled clinical studies in brain stimulation. Clin Neurophysiol 2006; 117: 845-850
  • 30 Fregni F, Thome-Souza S, Nitsche MA. et al. A controlled clinical trial of cathodal DC polarization in patients with refractory epilepsy. Epilepsia 2006; 47: 335-342
  • 31 San-Juan D, Espinoza-Lopez DA, Vazquez-Gregorio R. et al. A pilot randomized controlled clinical trial of transcranial alternating current stimulation in patients with multifocal pharmaco-resistant epilepsy. Epilepsy Behav 2022; 130: 108676
  • 32 Zoghi M, O'Brien TJ, Kwan P. et al. Cathodal transcranial direct-current stimulation for treatment of drug-resistant temporal lobe epilepsy: A pilot randomized controlled trial. Epilepsia Open 2016; 1: 130-135
  • 33 Yang D, Wang Q, Xu C. et al. Transcranial direct current stimulation reduces seizure frequency in patients with refractory focal epilepsy: A randomized, double-blind, sham-controlled, and three-arm parallel multicenter study. Brain Stimul 2020; 13: 109-116
  • 34 Lefaucheur JP, Antal A, Ayache SS. et al. Evidence-based guidelines on the therapeutic use of transcranial direct current stimulation (tDCS). Clin Neurophysiol 2017; 128: 56-92
  • 35 Lafon B, Henin S, Huang Y. et al. Low frequency transcranial electrical stimulation does not entrain sleep rhythms measured by human intracranial recordings. Nat. Commun 2017; 8: 1199
  • 36 Vöröslakos M, Takeuchi Y, Brinyiczki K. et al. Direct effects of transcranial electric stimulation on brain circuits in rats and humans. Nat. Commun 2018; 9: 483
  • 37 DeGiorgio CM, Soss J, Cook IA. et al. Randomized controlled trial of trigeminal nerve stimulation for drug-resistant epilepsy. Neurology 2013; 80: 786-791
  • 38 Soss J, Heck C, Murray D. et al. A prospective long-term study of external trigeminal nerve stimulation for drug-resistant epilepsy. Epilepsy Behav 2015; 42: 44-47
  • 39 Slaght SJ, Nashef L. An audit of external trigeminal nerve stimulation (eTNS) in epilepsy. Seizure 2017; 52: 60-62
  • 40 Yap JYY, Keatch C, Lambert E. et al. Critical Review of Transcutaneous Vagus Nerve Stimulation: Challenges for Translation to Clinical Practice. Front Neurosci 2020; 14: 284
  • 41 He W, Jing X, Wang X. et al. Transcutaneous auricular vagus nerve stimulation as a complementary therapy for pediatric epilepsy: a pilot trial. Epilepsy Behav 2013; 28: 343-346
  • 42 Rong P, Liu A, Zhang J. et al. Transcutaneous vagus nerve stimulation for refractory epilepsy: a randomized controlled trial. Clin Sci (Lond). 2014 Apr 1 Epub ahead of print
  • 43 Rong P, Liu A, Zhang J. et al. An alternative therapy for drug-resistant epilepsy: transcutaneous auricular vagus nerve stimulation. Chin Med J (Engl) 2014; 127: 300-304
  • 44 Aihua L, Lu S, Liping L. et al. A controlled trial of transcutaneous vagus nerve stimulation for the treatment of pharmacoresistant epilepsy. Epilepsy Behav 2014; 39: 105-110
  • 45 Bauer S, Baier H, Baumgartner C. et al. Transcutaneous Vagus nerve stimulation (tVNS) for treatment of drug-resistant epilepsy: a randomized, double-blind clinical trial (cMPsE02). Brain Stimul 2016; 9: 356-363
  • 46 Song GF, Wang HY, Wu CJ. et al. A retrospective study of transcutaneous vagus nerve stimulation for poststroke epilepsy. Medicine (Baltimore) 2018; 97: e11625
  • 47 Barbella G, Cocco I, Freri E. et al. Transcutaneous vagal nerve stimulatio (t-VNS): an adjunctive treatment option for refractory epilepsy. Seizure 2018; 60: 115-119
  • 48 Simpson HD, Schulze-Bonhage A, Cascino GD. et al. Practical considerations in epilepsy neurostimulation. Epilepsia 2022; 63: 2445-2460
  • 49 Krahl SE, Clark KB, Smith DC. et al. Locus coeruleus lesions suppress the seizure-attenuating effects of vagus nerve stimulation. Epilepsia 1998; 39: 709-714
  • 50 Raedt R, Clinckers R, Mollet L. et al. Increased hippocampal noradrenaline is a biomarker for efficacy of vagus nerve stimulation in a limbic seizure model. J Neurochem 2011; 117: 461-469
  • 51 Manta S, El Mansari M, Blier P. Novel attempts to optimize vagus nerve stimulation parameters on serotonin neuronal firing activity in the rat brain. Brain Stimul 2012; 5: 422-429
  • 52 Marrosu F, Serra A, Maleci A. et al. Correlation between GABA(A) receptor density and vagus nerve stimulation in individuals with drug-resistant partial epilepsy. Epilepsy Res 2003; 55: 59-70
  • 53 Fraschini M, Puligheddu M, Demuru M. et al. VNS induced desynchronization in gamma bands correlates with positive clinical outcome in temporal lobe pharmacoresistant epilepsy. Neurosci Lett 2013; 536: 14-18
  • 54 Henry TR. Therapeutic mechanisms of vagus nerve stimulation. Neurology 2002; 59: S3-S14
  • 55 The Vagus Nerve Stimulation Study Group. A randomized controlled trial of chronic vagus nerve stimulation for treatment of medically intractable seizures. Neurology 1995; 45: 224-230
  • 56 Handforth A, DeGiorgio CM, Schachter SC. et al. Vagus nerve stimulation therapy for partial-onset seizures: a randomized active-control trial. Neurology 1998; 51: 48-55
  • 57 Englot DJ, Rolston JD, Wright CW. et al. Rates and predictors of seizure freedom with Vagus nerve stimulation for intractable epilepsy. Neurosurgery 2016; 79: 345-353
  • 58 Kawai K, Tanaka T, Baba H. et al. Outcome of vagus nerve stimulation for drug-resistant epilepsy: the first three years of a prospective Japanese registry. Epileptic Disord 2017; 19: 327-338
  • 59 Morris GL, Mueller WM. Long-term treatment with vagus nerve stimulation in patients with refractory epilepsy. The Vagus Nerve Stimulation Study Group E01–E05 Neurology 1999; 53: 1731-173
  • 60 Schulze-Bonhage A. Long-term outcome in neurostimulation of epilepsy. Epilepsy Behav 2019; 91: 25-29
  • 61 Touma L, Dansereau B, Chan AY. J et al. Neurostimulation in people with drug-resistant epilepsy: Systematic review and meta-analysis from the ILAE Surgical Therapies Commission. Epilepsia 2022; 63: 1314-1329
  • 62 Boon P, Vonck K, Van Rijckevorsel K. et al. A prospective, multicenter study of cardiac-based seizure detection to activate vagus nerve stimulation. Seizure 2015; 32: 52-61
  • 63 Datta P, Galla KM, Sajja K. et al. Vagus nerve stimulation with tachycardia detection provides additional seizure reduction compared to traditional vagus nerve stimulation. Epilepsy Behav 2020; 111: 107280
  • 64 Kawaji H, Yamamoto T, Fujimoto A. et al. Additional seizure reduction by replacement with Vagus Nerve Stimulation Model 106 (AspireSR). Neurosci Lett 2020; 716: 134636
  • 65 El Tahry R, Hirsch M, Van Rijckevorsel K. et al. Early experiences with tachycardia-triggered vagus nerve stimulation using the AspireSR stimulator. Epileptic Disord 2016; 18: 155-162
  • 66 Marzec M, Edwards J, Sagher O. et al. Effects of vagus nerve stimulation on sleep-related breathing in epilepsy patients. Epilepsia 2003; 44: 930-935
  • 67 Giordano F, Zicca A, Barba C. et al Vagus nerve stimulation: Surgical technique of implantation and revision and related morbidity. Epilepsia 2017; 58 S1 85-90
  • 68 Ryvlin P, So EL, Gordon CM. et al. Long-term surveillance of SUDEP in drug-resistant epilepsy patients treated with VNS therapy. Epilepsia 2018; 59: 562-572
  • 69 Fisher R, Salanova V, Witt T. et al. Electrical stimulation of the anterior nucleus of thalamus for treatment of refractory epilepsy. Epilepsia 2010; 51: 899-908
  • 70 Fisher R. Deep brain stimulation (DBS) of thalamus for epilepsy. In: RaoVR. Neurostimulation for epilepsy: Advances, Applications and Opportunities. Academic press; London: 2023. pp 133-160
  • 71 Salanova V, Sperling MR, Gross RE. et al. SANTÉ Study Group. The SANTÉ study at 10 years of follow-up: Effectiveness, safety, and sudden unexpected death in epilepsy. Epilepsia 2021; 62: 1306-1317
  • 72 MORE Study Group. Peltola J, Colon AJ, Pimentel J. et al. Deep Brain Stimulation of the Anterior Nucleus of the Thalamus in Drug-Resistant Epilepsy in the MORE Multicenter Patient Registry. Neurology 2023; 100: e1852-e1865
  • 73 Fields MC, Eka O, Schreckinger C. et al. A multicenter retrospective study of patients treated in the thalamus with responsive neurostimulation. Front Neurol 2023; 14: 1202631
  • 74 Sadikot AF, Parent A, François C. The centre médian and parafascicular thalamic nuclei project respectively to the sensorimotor and associative limbic striatal territories in the squirrel monkey. Brain Res 1990; 510: 161-165
  • 75 Sadikot AF, Parent A, Smith Y. et al. Efferent connections of the centromedian and parafascicular thalamic nuclei in the squirrel monkey: a light and electron microscopic study of the thalamostriatal projection in relation to striatal heterogeneity. J Comp Neurol 1992; 320: 228-242
  • 76 Velasco F, Velasco M, Alcala H. Electrical stimulation of the thalamus. In Kutt H, Resor S, ed. Medical treatment of epilepsy: Advances in neurology. New York, NY. 1991: 677-680
  • 77 Fisher RS, Uematsu S, Krauss GL. et al. Placebo-controlled pilot study of centromedian thalamic stimulation in treatment of intractable seizures. Epilepsia. 1992; 33: 841-851
  • 78 Velasco F, Velasco M, Jimenez F. et al. Centromedian nucleus stimulation for epilepsy Clinical, electroencephalographic, and behavioral observations. Thalamus Relat Syst 2002; 1: 387-398
  • 79 Velasco AL, Velasco F, Jiménez F. et al. Neuromodulation of the centromedian thalamic nuclei in the treatment of generalized seizures and the improvement of the quality of life in patients with Lennox-Gastaut syndrome. Epilepsia 2006; 47: 1203-1212
  • 80 Chkhenkeli SA, Sramka M, Lortkipanidze GS. et al. Electrophysiological effects and clinical results of direct brain stimulation for intractable epilepsy. Clin Neurol Neurosurg 2004; 106: 318-329
  • 81 Valentín A, García Navarrete E, Chelvarajah R. et al. Deep brain stimulation of the centromedian thalamic nucleus for the treatment of generalized and frontal epilepsies. Epilepsia 2013; 54: 1823-1833
  • 82 Cukiert A, Burattini JA, Cukiert CM. et al. Centro-median stimulation yields additional seizure frequency and attention improvement in patients previously submitted to callosotomy. Seizure 2009; 18: 588-592
  • 83 Koubeissi MZ, Kahriman E, Syed TU. et al. Low-frequency electrical stimulation of a fiber tract in temporal lobe epilepsy. Ann Neurol 2013; 74: 223-231
  • 84 Sun FT, Morrell MJ. The RNS System: responsive cortical stimulation for the treatment of refractory partial epilepsy. Expert Rev Med Devices 2014; 11: 563-572
  • 85 Heck CN, King-Stephens D, Massey AD. et al. Two-year seizure reduction in adults with medically intractable partial onset epilepsy treated with responsive neurostimulation: final results of the RNS System Pivotal trial. Epilepsia. 2014; 55: 432-441
  • 86 Jobst BC, Kapur R, Barkley GL. et al. Brain-responsive neurostimulation in patients with medically intractable seizures arising from eloquent and other neocortical areas. Epilepsia 2017; 58: 1005-1014
  • 87 Bruzzone MJ, Issa N, Rose S. et al. Insights into the therapeutic effect of responsive neurostimulation assessed with scalp EEG recording: a case report. J Clin Neurophysiol 2018; 35: 438-441
  • 88 Loring DW, Kapur R, Meador KJ. et al. Differential neuropsychological outcomes following targeted responsive neurostimulation for partial-onset epilepsy. Epilepsia 2015; 56: 1836-1844
  • 89 King-Stephens D, Mirro E, Weber PB. et al. Lateralization of mesial temporal lobe epilepsy with chronic ambulatory electrocorticography. Epilepsia 2015; 56: 959-967
  • 90 Baud MO, Kleen JK, Mirro EA. et al. Multi-day rhythms modulate seizure risk in epilepsy. Nat Commun 2018; 9: 88
  • 91 Schulze-Bonhage A, Hirsch M, Knake S. et al. Focal Cortex Stimulation With a Novel Implantable Device and Antiseizure Outcomes in 2 Prospective Multicenter Single-Arm Trials. JAMA Neurol 2023; 80: 588-596
  • 92 Coenen VA, Jarc N, Hirsch M, Reinacher PC, Steinhoff BJ, Bast T, Schulze-Bonhage A, Sajonz BEA. Technical note: Preliminary surgical experience with a new implantable epicranial stimulation device for chronic focal cortex stimulation in drug-resistant epilepsy. Acta Neurochir (Wien). 2024 Mar 22 166(1). 145
  • 93 Dümpelmann M, Reinacher PC, Kravalis K. et al. A subgaleal electrode array for neurostimulation allows the recording of relevant information in closed loop applications. J Neurosci Methods 2021; 362: 109295
  • 94 Ryvlin P, Gilliam FG, Nguyen DK. et al. The long-term effect of vagus nerve stimulation on quality of life in patients with pharmacoresistant focal epilepsy: the PuLsE (Open Prospective Randomized Long-term Effectiveness) trial. Epilepsia 2014; 55: 893-900