RSS-Feed abonnieren
DOI: 10.1055/a-2311-6612
Neonatologische Bildgebung: Von Kontrastmittel-Ultraschall bis Bedside-MRT
Neonatal imaging: from contrast enhanced ultrasound to bedside MRIZUSAMMENFASSUNG
Die Bildgebungsmodalität der ersten Wahl ist die Sonografie. Bei durch die Sonografie nicht zu beantwortenden Fragen kommt zur weiteren Abklärung die MRT zur Anwendung, die sich in den ersten Lebenswochen in der Regel sogar ohne Sedierung durchführen lässt. Neben der Sonografie ist jedoch auch die konventionelle Röntgenaufnahme des Thorax und, bei entsprechenden Fragestellungen, des Abdomens auch beim Neugeborenen unverzichtbar. Die Computertomografie kommt hingegen nur bei sehr wenigen, speziellen Fragestellungen wie z. B. in Notfallsituationen oder bei manchen konnatalen Lungenfehlbildungen zum Einsatz. In vielen Fällen lassen sich heutzutage jedoch auch pulmonale Fragestellungen durch die Magnetresonanztomografie beantworten. MRT-kompatible Transportinkubatoren vereinfachen den Umgang mit kritisch kranken Neugeborenen im MRT. Bettseitige MRT-Geräte für die neonatale Intensivstation sind inzwischen erhältlich, und ihr Einsatz wird derzeit geprüft.
ABSTRACT
In neonates radiation protection is even more important than in the pediatric population anyhow. The first line imaging modality is therefore sonography. For further imaging MRI is the method of choice, which can usually even be performed without sedation in the first weeks of life. Beyond sonography, plainfield views of the thorax and, if appropriate, of the abdomen are also essential in newborns. The radiation dose of a plainfield view is very low. Computed tomography, on the other hand, is only used in a few special cases, e. g. in emergency situations or in some cases of congenital lung malformation. With technical advances, however, in many cases even pulmonal questions can nowadays be answered by MRI. MRI-compatible transport incubators simplify the handling of critically ill neonates in MRI. Bedside MRI devices in the neonatal intensive care unit are now available and their use is being evaluated.
Publikationsverlauf
Artikel online veröffentlicht:
09. August 2024
© 2024. Thieme. All rights reserved.
Georg Thieme Verlag KG,
Rüdigerstraße 14, 70469 Stuttgart, Germany
-
Literatur
- 1 Bakhmutsky M, Joiner MC, Jones TB. et al Differences in cytogenetic sensitivity to ionizing radiation in newborns and adults. Radiat Res 2014; 181 (06) 605-616
- 2 Pearce MS, Salotti JA, Little MP. et al Radiation exposure from CT scans in childhood and subsequent risk of leukaemia and brain tumours: a retrospective cohort study. Lancet 2012; 380 9840 499-505
- 3 Mathews JD, Forsythe AV, Brady Z. et al Cancer risk in 680,000 people exposed to computed tomography scans in childhood or adolescence: data linkage study of 11 million Australians. BMJ 2013; 346: f2360
- 4 Hauptmann M, Byrnes G, Cardis E. et al Brain cancer after radiation exposure from CT examinations of children and young adults: results from the EPI-CT cohort study. Lancet Oncol 2023; 24 (01) 45-53
- 5 Krille L, Dreger S, Schindel R. et al Risk of cancer incidence before the age of 15 years after exposure to ionising radiation from computed tomography: results from a German cohort study. Radiat Environ Biophys 2015; 54: 1-12
- 6 Plut D, Prutki M, Slak P. Children (Basel). The Use of Contrast-Enhanced Ultrasound (CEUS) in the Evaluation of the Neonatal Brain 2023; 10 (08) 1303
- 7 Squires JH, Beluk NH, Lee VK. et al Feasibility and Safety of Contrast-Enhanced Ultrasound of the Neonatal Brain: A Prospective Study Using MRI as the Reference Standard. AJR Am J Roentgenol 2022; 218 (01) 152-161
- 8 Hwang M. Introduction to contrast-enhanced ultrasound of the brain in neonates and infants: current understanding and future potential. Pediatr Radiol 2019; 49 (02) 254-262
- 9 Hwang M, De Jong Jr RM, Herman S. et al Novel Contrast-Enhanced Ultrasound Evaluation in Neonatal Hypoxic Ischemic Injury: Clinical Application and Future Directions. J Ultrasound Med 2017; 36 (11) 2379-2386
- 10 El-Ali AM, Subramanian S, Krofchik LM. et al Feasibility and reproducibility of shear wave elastography in pediatric cranial ultrasound. Pediatr Radiol 2020; 50: 990-996
- 11 Albayrak E, Kasap T. Evaluation of neonatal brain parenchyma using 2-dimensional shear wave elastography. J Ultrasound Med 2018; 37: 959-967
- 12 Brenner D, Elliston C, Hall E. et al Estimated risks of radiation-induced fatal cancer from pediatric CT. AJR Am J Roentgenol. 2001; 176 (02) 289-296
- 13 Alzen G, Benz-Bohm G. Radiation Protection in Pediatric Radiology. Kinderradiologie – Besonderheiten des Strahlenschutzes. Dtsch Arztebl Int 2011; 108 (24) 407-414
- 14 Cao J. et al Pediatric Applications of Photon-Counting Detector CT. AJR Am J Roentgenol 2023; 220 (04) 580-589
- 15 Bosch de Basea Gomez M, Thierry-Chef I, Harbron R. et al Risk of hematological malignancies from CT radiation exposure in children, adolescents and young adults. Nat Med 2023; 12: 3111-3119
- 16 Pokora R, Krille L, Dreger S. Computed tomography in Germany – results and insights from a cohort study and health insurance data (AOK). Dtsch Arztebl Int 2016; 113: 721-728
- 17 https://www.awmf.org/uploads/tx_szleitlinien/024-018l_S2k_Schaedel-Hirn-Trauma-Kinder-Jugendliche-SHT_2022_02.pdf
- 18 https://www.awmf.org/uploads/tx_szleitlinien/027-069l_S3_Kindesmisshandlung-Missbrauch-Vernachlaessigung-Kinderschutzleitlinie_2022-01.pdf
- 19 Sorge I, Hirsch FW, Frahm J. et al Decreased Need for Anesthesia during Ultra-Fast Cranial MRI in Young Children: One-Year Summary. Rofo 2022; 194 (02) 192-198
- 20 Arnold TC, Freeman CW, Litt B. et al Low-field MRI: Clinical promise and challenges. J Magn Reson Imaging 2023; 57 (01) 25-44