Rofo 2025; 197(01): 34-43
DOI: 10.1055/a-2312-6914
Review

Photon-counting detector CT – first experiences in the field of musculoskeletal radiology

Photon-Counting Detektor CT – Erste Erfahrungen im Bereich der muskuloskelettalen Bildgebung
Stefanie Bette
1   Department of Diagnostic and Interventional Radiology and Neuroradiology, University Hospital Augsburg, Augsburg, Germany (Ringgold ID: RIN39694)
,
Franka Risch
1   Department of Diagnostic and Interventional Radiology and Neuroradiology, University Hospital Augsburg, Augsburg, Germany (Ringgold ID: RIN39694)
,
1   Department of Diagnostic and Interventional Radiology and Neuroradiology, University Hospital Augsburg, Augsburg, Germany (Ringgold ID: RIN39694)
,
Daniel Popp
1   Department of Diagnostic and Interventional Radiology and Neuroradiology, University Hospital Augsburg, Augsburg, Germany (Ringgold ID: RIN39694)
,
Josua A. Decker
1   Department of Diagnostic and Interventional Radiology and Neuroradiology, University Hospital Augsburg, Augsburg, Germany (Ringgold ID: RIN39694)
,
David Kaufmann
1   Department of Diagnostic and Interventional Radiology and Neuroradiology, University Hospital Augsburg, Augsburg, Germany (Ringgold ID: RIN39694)
,
Lena Friedrich
1   Department of Diagnostic and Interventional Radiology and Neuroradiology, University Hospital Augsburg, Augsburg, Germany (Ringgold ID: RIN39694)
,
1   Department of Diagnostic and Interventional Radiology and Neuroradiology, University Hospital Augsburg, Augsburg, Germany (Ringgold ID: RIN39694)
,
Florian Schwarz
2   Institute of Conventional and Interventional Radiology, Donauisar Hospital Deggendorf, Deggendorf, Germany (Ringgold ID: RIN139250)
,
1   Department of Diagnostic and Interventional Radiology and Neuroradiology, University Hospital Augsburg, Augsburg, Germany (Ringgold ID: RIN39694)
3   Centre for Advanced Analytics and Predictive Sciences (CAAPS), University of Augsburg, Augsburg, Germany (Ringgold ID: RIN39694)
› Author Affiliations
Supported by: Siemens Healthineers

Abstract

Background

The introduction of photon-counting detector CT (PCD-CT) marks a remarkable leap in innovation in CT imaging. The new detector technology allows X-rays to be converted directly into an electrical signal without an intermediate step via a scintillation layer and allows the energy of individual photons to be measured. Initial data show high spatial resolution, complete elimination of electronic noise, and steady availability of spectral image data sets. In particular, the new technology shows promise with respect to the imaging of osseous structures. Recently, PCD-CT was implemented in the clinical routine. The aim of this review was to summarize recent studies and to show our first experiences with photon-counting detector technology in the field of musculoskeletal radiology.

Methods

We performed a literature search using Medline and included a total of 90 articles and reviews that covered recent experimental and clinical experiences with the new technology.

Results and Conclusion

In this review, we focus on (1) spatial resolution and delineation of fine anatomic structures, (2) reduction of radiation dose, (3) electronic noise, (4) techniques for metal artifact reduction, and (5) possibilities of spectral imaging. This article provides insight into our first experiences with photon-counting detector technology and shows results and images from experimental and clinical studies.

Key Points

  • This review summarizes recent experimental and clinical studies in the field of photon-counting detector CT and musculoskeletal radiology.

  • The potential of photon-counting detector technology in the field of musculoskeletal radiology includes improved spatial resolution, reduction in radiation dose, metal artifact reduction, and spectral imaging.

  • PCD-CT enables imaging at lower radiation doses while maintaining or even enhancing spatial resolution, crucial for reducing patient exposure, especially in repeated or prolonged imaging scenarios.

  • It offers promising results in reducing metal artifacts commonly encountered in orthopedic or dental implants, enhancing the interpretability of adjacent structures in postoperative and follow-up imaging.

  • With its ability to routinely acquire spectral data, PCD-CT scans allow for material classification, such as detecting urate crystals in suspected gout or visualizing bone marrow edema, potentially reducing reliance on MRI in certain cases.

Citation Format

Bette S, Risch F, Becker J et al. Photon-counting detector CT – first experiences in the field of musculoskeletal radiology. Fortschr Röntgenstr 2024; DOI 10.1055/a-2312-6914

Zusammenfassung

Hintergrund

Mit Einführung der Photon-Counting Detektor CT (PCD-CT) vollzieht sich ein bemerkenswerter Innovationssprung in der CT-Bildgebung. Die neue Detektor-Technologie ermöglicht es, Röntgenstrahlen ohne Zwischenschritt über eine Szintillatorschicht direkt in ein elektrisches Signal umzuwandeln und die Energie einzelner Photonen zu messen. Erste Daten zeigen eine hohe Ortsauflösung, eine vollständige Elimination des elektronischen Bildrauschens und die stetige Verfügbarkeit spektraler Bilddatensätze. Insbesondere in der Bildgebung ossärer Strukturen zeigt die neue Technologie vielversprechende Ansätze. Seit ca. 3 Jahren wird die PCD-CT bereits in der klinischen Routine angewandt. Ziel dieser Übersichtsarbeit ist es, einen Überblick über aktuelle Studien und unsere ersten Erfahrungen mit der Photon-Counting Detektor-Technologie im Bereich der muskuloskelettalen Bildgebung zu geben.

Methode

Es erfolgte eine Literaturrecherche auf „Medline“. Eingeschlossen wurden insgesamt 90 Übersichtsarbeiten und Originalarbeiten, die erste experimentelle oder klinische Erfahrungen mit der neuen Technologie zeigen.

Ergebnisse und Schlussfolgerung

Die Übersichtsarbeit fokussiert sich insbesondere auf (1) die Ortsauflösung und Abgrenzbarkeit kleiner anatomischer Strukturen, (2) die Reduktion der Strahlendosis, (3) das Bildrauschen, (4) Techniken zur Reduktion von Metallartefakten und (5) die Möglichkeiten der spektralen Bildgebung. Der Artikel gibt zudem Einblicke in unsere ersten klinischen Erfahrungen und zeigt die Ergebnisse und Bilder aus experimentellen und klinischen Studien.

Kernaussagen

  • Diese Übersicht fasst aktuelle experimentelle und klinische Studien im Bereich Photon-Counting Detektor CT (PCD-CT) und muskuloskelettaler Bildgebung zusammen.

  • Die PCD-Technologie hat das Potential der Verbesserung der Ortsauflösung, der Reduktion von Strahlendosis und Metallartefakten sowie einer spektralen Bildgebung bei jeder Untersuchung.

  • Die PCD-CT ermöglicht eine gleichbleibende bzw. teils sogar verbesserte Ortsauflösung bei niedrigeren Strahlendosen; dies ist entscheidend für die Reduktion der Strahlendosis, insbesondere bei Patientinnen und Patienten, die regelmäßige CT-Untersuchungen erhalten.

  • Die PCD-CT zeigt vielversprechende Ergebnisse in der Reduktion von Metallartefakten, beispielsweise bei Metallimplantaten in Hüfte, Wirbelsäule oder in den Zähnen; dies verbessert die Beurteilbarkeit der umliegenden Strukturen.

  • Mit der Möglichkeit, routinemäßig eine spektrale Bildgebung zu akquirieren, können in PCD-CT Untersuchungen beispielsweise Urat-Kristalle bei Verdacht auf Gicht dargestellt werden. Neue Studien zeigen auch das Potential der Darstellung eines Knochenmarködems; somit könnte ggf. auf weitere Untersuchungen (z.B. MRT) verzichtet werden.

Supplementary Material



Publication History

Received: 18 September 2023

Accepted after revision: 12 April 2024

Article published online:
24 May 2024

© 2024. Thieme. All rights reserved.

Georg Thieme Verlag KG
Oswald-Hesse-Straße 50, 70469 Stuttgart, Germany

 
  • References

  • 1 Flohr T, Petersilka M, Henning A. et al. Photon-counting CT review. Phys Med 2020; 79: 126-136
  • 2 Willemink MJ, Persson M, Pourmorteza A. et al. Photon-counting CT: Technical Principles and Clinical Prospects. Radiology 2018; 289: 293-312
  • 3 Leng S, Bruesewitz M, Tao S. et al. Photon-counting Detector CT: System Design and Clinical Applications of an Emerging Technology. Radiographics 2019; 39 (03) 729-743
  • 4 Sartoretti T, Wildberger JE, Flohr T. et al. Photon-counting detector CT: early clinical experience review. Br J Radiol 2023; 96: 20220544
  • 5 Flohr T, Schmidt B. Technical Basics and Clinical Benefits of Photon-Counting CT. Invest Radiol 2023; 58: 441-450
  • 6 Nehra AK, Rajendran K, Baffour FI. et al. Seeing More with Less: Clinical Benefits of Photon-counting Detector CT. Radiographics 2023; 43: e220158
  • 7 van der Bie J, van Straten M, Booij R. et al. Photon-counting CT: Review of initial clinical results. Eur J Radiol 2023; 163: 110829
  • 8 McCollough CH, Rajendran K, Leng S. et al. The technical development of photon-counting detector CT. Eur Radiol 2023; 33 (08) 5321-5330
  • 9 Baffour FI, Glazebrook KN, Ferrero A. et al. Photon-Counting Detector CT for Musculoskeletal Imaging: A Clinical Perspective. AJR Am J Roentgenol 2023; 220: 551-560
  • 10 Leng S, Rajendran K, Gong H. et al. 150-μm Spatial Resolution Using Photon-Counting Detector Computed Tomography Technology: Technical Performance and First Patient Images. Invest Radiol 2018; 53: 655-662
  • 11 Zhou W, Lane JI, Carlson ML. et al. Comparison of a Photon-Counting-Detector CT with an Energy-Integrating-Detector CT for Temporal Bone Imaging: A Cadaveric Study. AJNR Am J Neuroradiol 2018; 39: 1733-1738
  • 12 Grunz JP, Huflage H, Heidenreich JF. et al. Image Quality Assessment for Clinical Cadmium Telluride-Based Photon-Counting Computed Tomography Detector in Cadaveric Wrist Imaging. Invest Radiol 2021; 56: 785-790
  • 13 Grunz JP, Heidenreich JF, Lennartz S. et al. Spectral Shaping Via Tin Prefiltration in Ultra-High-Resolution Photon-Counting and Energy-Integrating Detector CT of the Temporal Bone. Invest Radiol 2022; 57: 819-825
  • 14 Gutjahr R, Halaweish AF, Yu Z. et al. Human Imaging With Photon Counting-Based Computed Tomography at Clinical Dose Levels: Contrast-to-Noise Ratio and Cadaver Studies. Invest Radiol 2016; 51: 421-429
  • 15 Bette SJ, Braun FM, Haerting M. et al. Visualization of bone details in a novel photon-counting dual-source CT scanner-comparison with energy-integrating CT. Eur Radiol 2022; 32: 2930-2936
  • 16 Patzer TS, Kunz AS, Huflage H. et al. Quantitative and qualitative image quality assessment in shoulder examinations with a first-generation photon-counting detector CT. Sci Rep 2023; 13: 8226
  • 17 Kämmerling N, Sandstedt M, Farnebo S. et al. Assessment of image quality in photon-counting detector computed tomography of the wrist – An ex vivo study. Eur J Radiol 2022; 154: 110442
  • 18 Patzer TS, Kunz AS, Huflage H. et al. Ultrahigh-Resolution Photon-Counting CT in Cadaveric Fracture Models: Spatial Frequency Is Not Everything. Diagnostics (Basel) 2023; 13 (10) 1677
  • 19 Conrads N, Grunz J-P, Huflage H. et al. Ultrahigh-resolution computed tomography of the cervical spine without dose penalty employing a cadmium-telluride photon-counting detector. Eur J Radiol 2023; 160: 110718
  • 20 Peña JA, Klein L, Maier J. et al. Dose-efficient assessment of trabecular microstructure using ultra-high-resolution photon-counting CT. Z Med Phys 2022; 32: 403-416
  • 21 Thomsen FSL, Horstmeier S, Niehoff JH. et al. Effective Spatial Resolution of Photon Counting CT for Imaging of Trabecular Structures is Superior to Conventional Clinical CT and Similar to High Resolution Peripheral CT. Invest Radiol 2022; 57: 620-626
  • 22 Grunz JP, Petritsch B, Luetkens KS. et al. Ultra-Low-Dose Photon-Counting CT Imaging of the Paranasal Sinus With Tin Prefiltration: How Low Can We Go?. Invest Radiol 2022; 57: 728-733
  • 23 Sonnow L, Salimova N, Behrendt L. et al. Photon-counting CT of elbow joint fractures: image quality in a simulated post-trauma setting with off-center positioning. Eur Radiol Exp 2023; 7: 15
  • 24 Gaillandre Y, Duhamel A, Flohr T. et al. Ultra-high resolution CT imaging of interstitial lung disease: impact of photon-counting CT in 112 patients. Eur Radiol 2023; 33 (08) 5528-5539
  • 25 Marton N, Gyebnar J, Fritsch K. et al. Photon-counting computed tomography in the assessment of rheumatoid arthritis-associated interstitial lung disease: an initial experience. Diagn Interv Radiol 2023; 29: 291-299
  • 26 Dunning CAS, Marsh JF, Winfree T. et al. Accuracy of Nodule Volume and Airway Wall Thickness Measurement Using Low-Dose Chest CT on a Photon-Counting Detector CT Scanner. Invest Radiol 2023; 58: 283-292
  • 27 Prayer F, Kienast P, Strassl A. et al. Detection of Post-COVID-19 Lung Abnormalities: Photon-counting CT versus Same-Day Energy-integrating Detector CT. Radiology 2023; 307: e222087
  • 28 Huber NR, Ferrero A, Rajendran K. et al. Dedicated convolutional neural network for noise reduction in ultra-high-resolution photon-counting detector computed tomography. Phys Med Biol 2022; 67 (17)
  • 29 Sartoretti T, Racine D, Mergen V. et al. Quantum Iterative Reconstruction for Low-Dose Ultra-High-Resolution Photon-Counting Detector CT of the Lung. Diagnostics (Basel) 2022; 12 (02) 522
  • 30 Van Ballaer V, Dubbeldam A, Muscogiuri E. et al. Impact of ultra-high-resolution imaging of the lungs on perceived diagnostic image quality using photon-counting CT. Eur Radiol 2023;
  • 31 Greffier J, Si-Mohamed SA, Lacombe H. et al. Virtual monochromatic images for coronary artery imaging with a spectral photon-counting CT in comparison to dual-layer CT systems: a phantom and a preliminary human study. Eur Radiol 2023; 33 (08) 5476-5488
  • 32 Remy-Jardin M, Hutt A, Flohr T. et al. Ultra-High-Resolution Photon-Counting CT Imaging of the Chest: A New Era for Morphology and Function. Invest Radiol 2023; 58: 482-487
  • 33 Mergen V, Eberhard M, Manka R. et al. First in-human quantitative plaque characterization with ultra-high resolution coronary photon-counting CT angiography. Front Cardiovasc Med 2022; 9: 981012
  • 34 Holmes TW, Yin Z, Stevens GM. et al. Ultra-high-resolution spectral silicon-based photon-counting detector CT for coronary CT angiography: Initial results in a dynamic phantom. J Cardiovasc Comput Tomogr 2023; 17 (05) 341-344
  • 35 Rajendran K, Baffour F, Powell G. et al. Improved visualization of the wrist at lower radiation dose with photon-counting-detector CT. Skeletal Radiol 2023; 52: 23-29
  • 36 Baffour FI, Rajendran K, Glazebrook KN. et al. Ultra-high-resolution imaging of the shoulder and pelvis using photon-counting-detector CT: a feasibility study in patients. Eur Radiol 2022; 32: 7079-7086
  • 37 McCabe C, Sauer TJ, Zarei M. et al. A systematic assessment of photon-counting CT for bone mineral density and microarchitecture quantifications. Proc SPIE Int Soc Opt Eng 2023; 12463: 1246303
  • 38 Huflage H, Grunz JP, Kunz AS. et al. Potential of employing a quantum iterative reconstruction algorithm for ultra-high-resolution photon-counting detector CT of the hip. Radiography (Lond) 2023; 29: 44-49
  • 39 Ruetters M, Sen S, Gehrig H. et al. Dental imaging using an ultra-high resolution photon-counting CT system. Sci Rep 2022; 12: 7125
  • 40 Rajendran K, Petersilka M, Henning A. et al. Full field-of-view, high-resolution, photon-counting detector CT: technical assessment and initial patient experience. Phys Med Biol 2021; 66
  • 41 Rajendran K, Voss BA, Zhou W. et al. Dose Reduction for Sinus and Temporal Bone Imaging Using Photon-Counting Detector CT With an Additional Tin Filter. Invest Radiol 2020; 55: 91-100
  • 42 Benson JC, Rajendran K, Lane JI. et al. A New Frontier in Temporal Bone Imaging: Photon-Counting Detector CT Demonstrates Superior Visualization of Critical Anatomic Structures at Reduced Radiation Dose. AJNR Am J Neuroradiol 2022; 43: 579-584
  • 43 Rajagopal JR, Schwartz FR, Solomon JB. et al. High Spatial-Resolution Skull Base Imaging With Photon-Counting Computed Tomography and Energy-Integrating Computed Tomography: A Comparative Phantom Study. J Comput Assist Tomogr 2023; 47 (04) 613-620
  • 44 Rau A, Straehle J, Stein T. et al. Photon-Counting Computed Tomography (PC-CT) of the spine: impact on diagnostic confidence and radiation dose. Eur Radiol 2023; 33 (08) 5578-5586
  • 45 Marth AA, Marcus RP, Feuerriegel GC. et al. Photon-Counting Detector CT Versus Energy-Integrating Detector CT of the Lumbar Spine: Comparison of Radiation Dose and Image Quality. AJR Am J Roentgenol 2024; 222 (01) e2329950
  • 46 Sartoretti T, Landsmann A, Nakhostin D. et al. Quantum Iterative Reconstruction for Abdominal Photon-counting Detector CT Improves Image Quality. Radiology 2022; 303: 339-348
  • 47 Cook J, Rajendran K, Ferrero A. et al. Photon counting detector CT: a new frontier of myeloma bone disease evaluation. Acta Haematol 2023; 146 (05) 419-423
  • 48 Schwartz FR, Vinson EN, Spritzer CE. et al. Prospective Multireader Evaluation of Photon-counting CT for Multiple Myeloma Screening. Radiol Imaging Cancer 2022; 4: e220073
  • 49 Baffour FI, Huber NR, Ferrero A. et al. Photon-counting Detector CT with Deep Learning Noise Reduction to Detect Multiple Myeloma. Radiology 2023; 306: 229-236
  • 50 Winkelmann MT, Hagen F, Le-Yannou L. et al. Myeloma bone disease imaging on a 1st-generation clinical photon-counting detector CT vs. 2nd-generation dual-source dual-energy CT. Eur Radiol 2023; 33: 2415-2425
  • 51 Wehrse E, Sawall S, Klein L. et al. Potential of ultra-high-resolution photon-counting CT of bone metastases: initial experiences in breast cancer patients. NPJ Breast Cancer 2021; 7: 3
  • 52 Hermans R, Boomgaert L, Cockmartin L. et al. Photon-counting CT allows better visualization of temporal bone structures in comparison with current generation multi-detector CT. Insights Imaging 2023; 14: 112
  • 53 Booij R, Kämmerling NF, Oei EHG. et al. Assessment of visibility of bone structures in the wrist using normal and half of the radiation dose with photon-counting detector CT. Eur J Radiol 2023; 159: 110662
  • 54 Bette S, Decker JA, Braun FM. et al. Optimal Conspicuity of Liver Metastases in Virtual Monochromatic Imaging Reconstructions on a Novel Photon-Counting Detector CT-Effect of keV Settings and BMI. Diagnostics (Basel) 2022; 12 (05) 1231
  • 55 Liu LP, Shapira N, Chen AA. et al. First-generation clinical dual-source photon-counting CT: ultra-low-dose quantitative spectral imaging. Eur Radiol 2022; 32: 8579-8587
  • 56 Gruschwitz P, Hartung V, Kleefeldt F. et al. Photon-Counting Versus Energy-Integrating Detector CT Angiography of the Lower Extremity in a Human Cadaveric Model With Continuous Extracorporeal Perfusion. Invest Radiol 2023; 58 (10) 740-745
  • 57 Stamp LK, Anderson NG, Becce F. et al. Clinical Utility of Multi-Energy Spectral Photon-Counting Computed Tomography in Crystal Arthritis. Arthritis Rheumatol 2019; 71: 1158-1162
  • 58 Chou H, Chin TY, Peh WCG. Dual-energy CT in gout – A review of current concepts and applications. J Med Radiat Sci 2017; 64: 41-51
  • 59 Baer K, Kieser S, Schon B. et al. Spectral CT imaging of human osteoarthritic cartilage via quantitative assessment of glycosaminoglycan content using multiple contrast agents. APL Bioeng 2021; 5: 026101
  • 60 Rajendran K, Murthy NS, Frick MA. et al. Quantitative Knee Arthrography in a Large Animal Model of Osteoarthritis Using Photon-Counting Detector CT. Invest Radiol 2020; 55: 349-356
  • 61 Garcelon C, Abascal J, Olivier C. et al. Quantification of cartilage and subchondral bone cysts on knee specimens based on a spectral photon-counting computed tomography. Sci Rep 2023; 13: 11080
  • 62 Starr AM, Wessely MA, Albastaki U. et al. Bone marrow edema: pathophysiology, differential diagnosis, and imaging. Acta Radiol 2008; 49: 771-786
  • 63 Kellock TT, Nicolaou S, Kim SSY. et al. Detection of Bone Marrow Edema in Nondisplaced Hip Fractures: Utility of a Virtual Noncalcium Dual-Energy CT Application. Radiology 2017; 284: 798-805
  • 64 Karaca L, Yuceler Z, Kantarci M. et al. The feasibility of dual-energy CT in differentiation of vertebral compression fractures. Br J Radiol 2016; 89: 20150300
  • 65 Reddy T, McLaughlin PD, Mallinson PI. et al. Detection of occult, undisplaced hip fractures with a dual-energy CT algorithm targeted to detection of bone marrow edema. Emerg Radiol 2015; 22: 25-29
  • 66 Wang C-K, Tsai JM, Chuang M-T. et al. Bone marrow edema in vertebral compression fractures: detection with dual-energy CT. Radiology 2013; 269: 525-33
  • 67 Koch V, Müller FC, Gosvig K. et al. Incremental diagnostic value of color-coded virtual non-calcium dual-energy CT for the assessment of traumatic bone marrow edema of the scaphoid. Eur Radiol 2021; 31: 4428-4437
  • 68 Booz C, Nöske J, Lenga L. et al. Color-coded virtual non-calcium dual-energy CT for the depiction of bone marrow edema in patients with acute knee trauma: a multireader diagnostic accuracy study. Eur Radiol 2020; 30: 141-150
  • 69 Gosangi B, Mandell JC, Weaver MJ. et al. Bone Marrow Edema at Dual-Energy CT: A Game Changer in the Emergency Department. RadioGraphics 2020; 40: 859-874
  • 70 Pache G, Krauss B, Strohm P. et al. Dual-energy CT virtual noncalcium technique: detecting posttraumatic bone marrow lesions--feasibility study. Radiology 2010; 256: 617-624
  • 71 Long Z, Tiegs-Heiden CA, Anderson TL. et al. Clinical evaluation of a new adaptive iterative metal artifact reduction method in whole-body low-dose CT skeletal survey examinations. Skeletal Radiol 2021; 50: 149-157
  • 72 Katsura M, Sato J, Akahane M. et al. Current and Novel Techniques for Metal Artifact Reduction at CT: Practical Guide for Radiologists. Radiographics 2018; 38: 450-461
  • 73 Laukamp KR, Zopfs D, Lennartz S. et al. Metal artifacts in patients with large dental implants and bridges: combination of metal artifact reduction algorithms and virtual monoenergetic images provides an approach to handle even strongest artifacts. Eur Radiol 2019; 29: 4228-4238
  • 74 Laukamp KR, Lennartz S, Neuhaus VF. et al. CT metal artifacts in patients with total hip replacements: for artifact reduction monoenergetic reconstructions and post-processing algorithms are both efficient but not similar. Eur Radiol 2018; 28: 4524-4533
  • 75 Schmidt AMA, Grunz JP, Petritsch B. et al. Combination of Iterative Metal Artifact Reduction and Virtual Monoenergetic Reconstruction Using Split-Filter Dual-Energy CT in Patients With Dental Artifact on Head and Neck CT. AJR Am J Roentgenol 2022; 218: 716-727
  • 76 Khodarahmi I, Haroun RR, Lee M. et al. Metal Artifact Reduction Computed Tomography of Arthroplasty Implants: Effects of Combined Modeled Iterative Reconstruction and Dual-Energy Virtual Monoenergetic Extrapolation at Higher Photon Energies. Invest Radiol 2018; 53: 728-735
  • 77 Neuhaus V, Grosse Hokamp N, Zopfs D. et al. Reducing artifacts from total hip replacements in dual layer detector CT: Combination of virtual monoenergetic images and orthopedic metal artifact reduction. Eur J Radiol 2019; 111: 14-20
  • 78 Schmitt N, Wucherpfennig L, Rotkopf LT. et al. Metal artifacts and artifact reduction of neurovascular coils in photon-counting detector CT versus energy-integrating detector CT – in vitro comparison of a standard brain imaging protocol. Eur Radiol 2023; 33: 803-811
  • 79 Zhou W, Bartlett DJ, Diehn FE. et al. Reduction of Metal Artifacts and Improvement in Dose Efficiency Using Photon-Counting Detector Computed Tomography and Tin Filtration. Invest Radiol 2019; 54: 204-211
  • 80 Do TD, Sawall S, Heinze S. et al. A semi-automated quantitative comparison of metal artifact reduction in photon-counting computed tomography by energy-selective thresholding. Sci Rep 2020; 10: 21099
  • 81 Chang CH, Wu HN, Hsu CH. et al. Virtual monochromatic imaging with projection-based material decomposition algorithm for metal artifacts reduction in photon-counting detector computed tomography. PLoS One 2023; 18: e0282900
  • 82 Byl A, Klein L, Sawall S. et al. Photon-counting normalized metal artifact reduction (NMAR) in diagnostic CT. Med Phys 2021; 48: 3572-3582
  • 83 Richtsmeier D, O’Connell J, Rodesch PA. et al. Metal artifact correction in photon-counting detector computed tomography: metal trace replacement using high-energy data. Med Phys 2023; 50: 380-396
  • 84 Anhaus JA, Schmidt S, Killermann P. et al. Iterative metal artifact reduction on a clinical photon counting system-technical possibilities and reconstruction selection for optimal results dependent on the metal scenario. Phys Med Biol 2022; 67 (11)
  • 85 Lee CL, Park J, Nam S. et al. Metal artifact reduction and tumor detection using photon-counting multi-energy computed tomography. PLoS One 2021; 16: e0247355
  • 86 Popp D, Sinzinger AX, Decker JA. et al. Spectral metal artifact reduction after posterior spinal fixation in photon-counting detector CT datasets. Eur J Radiol 2023; 165: 110946
  • 87 Schreck J, Laukamp KR, Niehoff JH. et al. Metal artifact reduction in patients with total hip replacements: evaluation of clinical photon counting CT using virtual monoenergetic images. Eur Radiol 2023; 33 (12) 9286-9295
  • 88 Risch F, Decker JA, Popp D. et al. Artifact Reduction From Dental Material in Photon-Counting Detector Computed Tomography Data Sets Based on High-keV Monoenergetic Imaging and Iterative Metal Artifact Reduction Reconstructions-Can We Combine the Best of Two Worlds?. Invest Radiol 2023; 58 (09) 691-696
  • 89 Layer YC, Mesropyan N, Kupczyk PA. et al. Combining iterative metal artifact reduction and virtual monoenergetic images severely reduces hip prosthesis-associated artifacts in photon-counting detector CT. Sci Rep 2023; 13: 8955
  • 90 Patzer TS, Kunz AS, Huflage H. et al. Combining virtual monoenergetic imaging and iterative metal artifact reduction in first-generation photon-counting computed tomography of patients with dental implants. Eur Radiol 2023; 33 (11) 7818-7829