Synthesis
DOI: 10.1055/a-2314-1877
paper

Modular Synthesis of Conjugated Aromatic Boronate Esters by Radical Xanthate Addition

Congze He
a   State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200438, P. R. of China
b   Laboratoire de Synthèse Organique, CNRS UMR 7652, Ecole Polytechnique, Route de Scalay, 91128 Palaiseau Cedex, France
,
Xiangcheng Pan
a   State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200438, P. R. of China
,
Samir Z. Zard
b   Laboratoire de Synthèse Organique, CNRS UMR 7652, Ecole Polytechnique, Route de Scalay, 91128 Palaiseau Cedex, France
› Institutsangaben
We thank the China Scholarship Council (scholarship to C.H.), the National Natural Science Foundation of China (22322103 and 22271057), the Natural Science Foundation of Shanghai Municipality (22ZR1406000), and the State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University for support.


Abstract

Conjugated aromatic boronate esters serve as crucial intermediates in the synthesis of pharmaceuticals and polymer materials. Traditional methods for their synthesis typically involve organoboration of aromatic ring compounds, where pre-constructions of aromatic rings are required. Here, we present a general strategy for the synthesis of diverse conjugated aromatic boronate esters based on the radical addition of xanthates. Through this method, we synthesized various boronate ester xanthates that could be utilized as a platform to furnish conjugated aromatic building blocks, including thiophenes, pyrroles, tetralones, naphthols, and naphthylamines. This cost-effective strategy holds promise as a viable method for the industrial-scale production of (hetero)aromatic boronate esters.

Supporting Information



Publikationsverlauf

Eingereicht: 21. März 2024

Angenommen nach Revision: 25. April 2024

Accepted Manuscript online:
25. April 2024

Artikel online veröffentlicht:
21. Mai 2024

© 2024. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

  • 1 Wu W, Liu Y, Zhu D. Chem. Soc. Rev. 2010; 39: 1489
    • 2a Wakchaure VC, Das T, Babu SS. ChemPlusChem 2019; 84: 1253
    • 2b Xu C, Dong J, He C, Yun J, Pan X. Giant 2023; 14: 100154
    • 2c Xu C, He C, Li N, Yang S, Du Y, Matyjaszewski K, Pan X. Nat. Commun. 2021; 12: 5853
  • 3 Jung HS, Verwilst P, Sharma A, Shin J, Sessler JL, Kim JS. Chem. Soc. Rev. 2018; 47: 2280
  • 4 Hendsbee AD, McAfee SM, Sun J.-P, McCormick TM, Hill IG, Welch GC. J. Mater. Chem. C 2015; 3: 8904
    • 5a Brédas J.-L, Beljonne D, Coropceanu V, Cornil J. Chem. Rev. 2004; 104: 4971
    • 5b Murphy AR, Fréchet JM. J. Chem. Rev. 2007; 107: 1066
    • 5c Mdluli SB, Ramoroka ME, Yussuf ST, Modibane KD, John-Denk VS, Iwuoha EI. Polymers 2022; 14: 716
    • 5d Kertesz M, Choi CH, Yang S. Chem. Rev. 2005; 105: 3448
    • 5e Zhen X, Pu K, Jiang X. Small 2021; 17: e2004723
    • 6a Nanjo T, Matsugasako T, Maruo Y, Takemoto Y. Org. Lett. 2022; 24: 359
    • 6b Guo H.-M, He B.-Q, Wu X. Org. Lett. 2022; 24: 3199
    • 6c Li J, Li J, Ji X, He R, Liu Y, Chen Z, Huang Y, Liu Q, Li Y. Org. Lett. 2021; 23: 7412
    • 6d López-Mendoza P, Miranda LD. Org. Biomol. Chem. 2020; 18: 3487
    • 7a Zard SZ. Helv. Chim. Acta 2019; 102: e1900134
    • 7b Quiclet-Sire B, Zard SZ. Pure Appl. Chem. 2011; 83: 519
  • 8 Zard SZ. Tetrahedron 2020; 76: 130802
  • 9 Quiclet-Sire B, Zard SZ. Synlett 2017; 28: 2685
    • 10a Jullien H, Quiclet-Sire B, Tetart T, Zard SZ. Org. Lett. 2014; 16: 302
    • 10b Huang G, Li J, Li J, Li J, Sun M, Zhou P, Chen L, Huang Y, Jiang S, Li Y. J. Org. Chem. 2020; 85: 13037
    • 11a Quiclet-Sire B, Zard SZ. Org. Biomol. Chem. 2023; 21: 910
    • 11b Guignard RF, Zard SZ. Chem. Commun. 2011; 47: 12185
    • 11c Gholami F, Ansari S, Larijani B, Mahdavi M. J. Organomet. Chem. 2023; 992: 122663
    • 11d Zhang Z, Gevorgyan V. Org. Lett. 2020; 22: 8500
    • 11e Zhou T, Chen H, Liu Y, Wang H, Yan Q, Wang W, Chen F. J. Org. Chem. 2022; 87: 15582
    • 11f Muthupandi P, Sundaravelu N, Sekar G. J. Org. Chem. 2017; 82: 1936
    • 11g Sangeetha S, Muthupandi P, Sekar G. Org. Lett. 2015; 17: 6006
    • 11h Zhu L, Zhang M. J. Org. Chem. 2004; 69: 7371
    • 12a Huang Q, Michalland J, Zard SZ. Angew. Chem. Int. Ed. 2019; 58: 16936
    • 12b Michalland J, Zard SZ. Org. Lett. 2021; 23: 8018
    • 12c Quiclet-Sire B, Zard SZ. J. Am. Chem. Soc. 2015; 137: 6762
  • 13 Qiao H, Michalland J, Huang Q, Zard SZ. Chem. Eur. J. 2023; 29: e202302235
  • 15 Li Y, Li W, Tian J, Huang G, Lv H. Org. Lett. 2020; 22: 5353
    • 16a Cordero-Vargas A, Pérez-Martín I, Quiclet-Sire B, Zard SZ. Org. Biomol. Chem. 2004; 2: 3018
    • 16b Tran ND. M, Zard SZ. Org. Biomol. Chem. 2014; 12: 3251
  • 17 Hitosugi S, Tanimoto D, Nakanishi W, Isobe H. Chem. Lett. 2012; 41: 972