Int J Sports Med
DOI: 10.1055/a-2316-7966
Training & Testing

Monitoring bar velocity to quantify fatigue in resistance training

Raony Espíndola Moura
1   Physical Education, Federal University of Pernambuco, Recife, Brazil (Ringgold ID: RIN28116)
,
Rodrigo Fabio Bezerra da Silva
2   Graduate Program in Physical Education Federal University of Pernambuco, Recife, Brazil, Universidade Federal de Pernambuco, Recife, Brazil (Ringgold ID: RIN28116)
,
Lucas Morais de Souza Gomes
1   Physical Education, Federal University of Pernambuco, Recife, Brazil (Ringgold ID: RIN28116)
,
José Leonardo Ramos da Silva
1   Physical Education, Federal University of Pernambuco, Recife, Brazil (Ringgold ID: RIN28116)
,
Rafael dos Santos Henrique
1   Physical Education, Federal University of Pernambuco, Recife, Brazil (Ringgold ID: RIN28116)
,
Filipe Antônio de Barros Sousa
3   Institute of Physical Education and Sports, Federal University of Alagoas, Maceio, Brazil (Ringgold ID: RIN28112)
,
Fabiano Fonseca
4   Federal Rural University of Pernambuco, Recife, Brazil, Universidade Federal Rural de Pernambuco, Recife, Brazil (Ringgold ID: RIN67744)
› Institutsangaben

We analyzed the effects of load magnitude and bar velocity variables on sensitivity to fatigue. Seventeen resistance-trained men (age=25.7±4.9 years; height=177.0±7.2 cm; body mass=77.7±12.3 kg; back-squat 1RM=145.0±33.9 kg; 1RM/body mass=1.86) participated in the study. Pre- and post-exercise changes in the mean propulsive velocity (MPV) and peak velocity (PV) in the back-squat at different intensities were compared with variations in the countermovement jump (CMJ). CMJ height decreased significantly from pre- to post-exercise (∆%=-7.5 to -10.4; p<0.01; ES=0.37 to 0.60). Bar velocity (MPV and PV) decreased across all loads (∆%=-4.0 to -12.5; p<0.01; ES=0.32 to 0.66). The decrease in performance was similar between the CMJ, MPV (40% and 80% 1RM; p=1.00), and PV (80% 1RM; p=1.00). The magnitude of reduction in CMJ performance was greater than MPV (60% 1RM; p=0.05) and PV (40% and 60% 1RM; p<0.01) at the post-exercise moment. Low systematic bias and acceptable levels of agreement were only found between CMJ and MPV at 40% and 80% 1RM (bias=0.35 to 1.59; ICC=0.51 to 0.71; CV=5.1% to 8.5%). These findings suggest that the back-squat at 40% or 80% 1RM using MPV provides optimal sensitivity to monitor fatigue through changes in bar velocity.



Publikationsverlauf

Eingereicht: 29. Dezember 2023

Angenommen nach Revision: 29. April 2024

Accepted Manuscript online:
29. April 2024

© . Thieme. All rights reserved.

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany