Subscribe to RSS
DOI: 10.1055/a-2317-6778
Solid-State Mechanochemical Clemmensen Reduction
The authors thank DST-SERB, GoI (grant no. SCP/2022/000352) for financial support. SKJ thanks PMRF for the fellowship.
Dedicated to Professor Dr. Hiriyakkanavar Ila on the occasion of her 80th birthday
Abstract
Mechanochemical synthesis has emerged as a sustainable alternative to traditional organic reactions, offering several advantages, including reduced solvent usage, lower reaction time, lower energy consumption, and enhanced reaction efficiency. In this study, the application of mechanochemistry to Clemmensen reduction, a classic method for converting aldehydes and ketones into alkanes, was explored. By employing ball milling as a mechanical activation, the feasibility and efficacy of mechanochemical Clemmensen reduction in various substrates were demonstrated. The results indicate that this approach offers comparable or improved yields and functional group compatibility compared to conventional methods while minimizing environmental impact. The reaction optimization strategies and scope of substrates are discussed, highlighting the potential of mechanochemical synthesis for sustainable organic transformations.
Key words
mechanochemistry - Clemmensen reduction - green chemistry - alkane synthesis - ball millingSupporting Information
- Supporting information for this article is available online at https://doi.org/10.1055/a-2317-6778.
- Supporting Information
Publication History
Received: 22 March 2024
Accepted after revision: 30 April 2024
Accepted Manuscript online:
30 April 2024
Article published online:
21 May 2024
© 2024. Thieme. All rights reserved
Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany
-
References
- 1 Li J, Huang C.-Y, Li C.-J. Angew. Chem. Int. Ed. 2022; 61: e202112770
- 2a Bozell JJ, Petersen GR. Green Chem. 2010; 12: 539
- 2b Vennestrøm PN. R, Osmundsen CM, Christensen CH, Taarning E. Angew. Chem. Int. Ed. 2011; 50: 10502
- 2c Poizot P, Gaubicher J, Renault S, Dubois L, Liang Y, Yao Y. Chem. Rev. 2020; 120: 6490
- 2d Mika LT, Cséfalvay E, Németh Á. Chem. Rev. 2018; 118: 505
- 3 Clemmensen E. Ber. Dtsch. Chem. Ges. 1913; 46: 1837
- 4 Driscoll CT, Mason RP, Chan HM, Jacob DJ, Pirrone N. Environ. Sci. Technol. 2013; 47: 4967
- 5a Mehta M, Holthausen MH, Mallov I, Pérez M, Qu Z.-W, Grimme S, Stephan DW. Angew. Chem. Int. Ed. 2015; 54: 8250
- 5b Dehmlow EV, Niemann T, Kraft A. Synth. Commun. 1996; 26: 1467
- 5c Lau CK, Dufresne C, Belanger PC, Pietre S, Scheigetz J. J. Org. Chem. 1986; 51: 3038
- 5d Ketcha DM, Lieurance BA, Homan DF. J, Gribble GW. J. Org. Chem. 1989; 54: 4350
- 5e Andrews RJ, Chitnis SS, Stephan DW. Chem. Commun. 2019; 55: 5599
- 6a Yang Z, Zhu X, Yang S, Cheng W, Zhang X, Yang Z. Adv. Synth. Catal. 2020; 362: 5496
- 6b Schäfer C, Ellstrom CJ, Cho H, Török B. Green Chem. 2017; 19: 1230
- 6c Zhang B, Guo X, Tao L, Li R, Lin Z, Zhao W. ACS Catal. 2022; 12: 4640
- 7a Asensio JM, Miguel AB, Fazzini P.-F, van Leeuwen PW. N. M, Chaudret B. Angew. Chem. Int. Ed. 2019; 58: 11306
- 7b Wang W, Yang Y, Luo H, Hu T, Liu W. World J. Clin. Cases 2011; 12: 436
- 7c Kogan V, Aizenshtat Z, Neumann R. Angew. Chem. Int. Ed. 1999; 38: 3331
- 8a Li J, He L, Liu X, Cheng X, Li G. Angew. Chem. Int. Ed. 2019; 58: 1759
- 8b Sun K, Xu Z, Ramadoss V, Tian L, Wang Y. Chem. Commun. 2022; 58: 11155
- 9a Do J.-L, Friščić T. Synlett 2017; 28: 2066
- 9b Tan D, Friščić T. Eur. J. Org. Chem. 2018; 18
- 9c Garay AL, Pichon A, James SL. Chem. Soc. Rev. 2007; 36: 846
- 9d Juaristi E, Avila-Ortiz CG. Synthesis 2023; 55: 2439
- 10a Stolle A, Szuppa T, Leonhardt SE. S, Ondruschka B. Chem. Soc. Rev. 2011; 40: 2317
- 10b Bruckmann A, Krebs A, Bolm C. Green Chem. 2008; 10: 1131
- 11 Gomollón-Bel F. Chem. Int. 2019; 41: 12
- 12a Kubota K, Pang Y, Miura A, Ito H. Science 2019; 366 (6472) 1500
- 12b Takahashi R, Hu A, Gao P, Gao Y, Pang Y, Seo T, Jiang J, Maeda S, Takaya H, Kubota K, Ito H. Nat. Commun. 2021; 12: 6691
- 12c Gao Y, Feng C, Seo T, Kubota K, Ito H. Chem. Sci. 2022; 13: 430
- 12d Gao Y, Kubota K, Ito H. Angew. Chem. Int. Ed. 2023; 62: e202217723
- 12e Takahashi R, Gao P, Kubota K, Ito H. Chem. Sci. 2023; 14: 499
- 12f Gao P, Jiang J, Maeda S, Kubota K, Ito H. Angew. Chem. Int. Ed. 2022; 61: e202207118
- 12g Pontini L, Leitch JA, Browne DL. Green Chem. 2023; 25: 4319
- 13a Schlepphorst C, Maji B, Glorius F. ACS Catal. 2016; 6: 4184
- 13b Collins KD, Glorius F. Nat. Chem. 2013; 5: 597
- 14 Bulavka VN. Int. Electron. Conf. Synth. Org. Chem., 8th 2004; A025
- 15 Kiss Á, Hell Z, Bálint M. Org. Biomol. Chem. 2010; 8: 331
- 16 Feng H.-J, Sun X, Wang J.-W. New J. Chem. 2023; 47: 3104
- 17 Wang A, Zhou X, Yan J, Hou T, He M, Qian J, Zhou W, Sun Y. Eur. J. Org. Chem. 2023; 26: e202300590
- 18 Wang H, Li L, Bai X.-F, Shang J.-Y, Yang K.-F, Xu L.-W. Adv. Synth. Catal. 2013; 355: 341
- 19 Cooper T, Novak A, Humphreys LD, Walker MD, Woodward S. Adv. Synth. Catal. 2006; 348: 686
- 20 Fu F, Gurung L, Czaun M, Mathew T, Prakash GK. S. Tetrahedron Lett. 2019; 60: 151020
- 21 Jeong J, Suzuki K, Yamaguchi K, Mizuno N. New J. Chem. 2017; 41: 13226
- 22 Echevarría I, Vaquero M, Manzano BR, Jalón FA, Quesada R, Espino G. Inorg. Chem. 2022; 61: 6193
- 23 Andries-Ulmer A, Brunner C, Rehbein J, Gulder T. J. Am. Chem. Soc. 2018; 140: 13034
- 24 Li S, Ma Y, Zhao Y, Liu R, Zhao Y, Dai X, Ma N, Streb C, Chen X. Angew. Chem. Int. Ed. 2023; 62: e202314999
- 25 Miyazawa A, Yamato T, Tashiro M. J. Org. Chem. 1991; 56: 1334
- 26 Takahashi T, Yoshimura M, Suzuka H, Maegawa T, Sawama Y, Monguchi Y, Sajiki H. Tetrahedron 2012; 68: 8293
- 27 Sang S, Unruh T, Demeshko S, Domenianni LI, van Leest NP, Marquetand P, Schneck F, Würtele C, de Zwart FJ, de Bruin B, González L, Vöhringer P, Schneider S. Chem. Eur. J. 2021; 27: 16978
- 28 Dong C.-p, Nakamura K, Taniguchi T, Mita S, Kodama S, Kawaguchi S.-i, Nomoto A, Ogawa A, Mizuno T. ACS Omega 2018; 3: 9814
- 29 Yao W, Li R, Jiang H, Han D. J. Org. Chem. 2018; 83: 2250
- 30 Cook A, MacLean H, St Onge P, Newman SG. ACS Catal. 2021; 11: 13337