CC BY 4.0 · Semin Liver Dis
DOI: 10.1055/a-2334-8311
Review Article

Overcoming Resistance to Immune Checkpoint Blockade in Liver Cancer with Combination Therapy: Stronger Together?

Wiebke Werner
1   Department of Hepatology and Gastroenterology, Charité Universitaetsmedizin Berlin, Berlin, Germany
,
Maria Kuzminskaya
1   Department of Hepatology and Gastroenterology, Charité Universitaetsmedizin Berlin, Berlin, Germany
,
Isabella Lurje
1   Department of Hepatology and Gastroenterology, Charité Universitaetsmedizin Berlin, Berlin, Germany
,
Frank Tacke
1   Department of Hepatology and Gastroenterology, Charité Universitaetsmedizin Berlin, Berlin, Germany
,
Linda Hammerich
1   Department of Hepatology and Gastroenterology, Charité Universitaetsmedizin Berlin, Berlin, Germany
› Author Affiliations
Funding This study was supported by the German Research Foundation (DFG; SPP2306 Ha7431/3-1, Ta434/8-1, SFB/TRR 296, and SFB1382, Project-ID 403224013), and the Else-Kröner-Fresenius-Stiftung (2021_EKEA.145).


Abstract

Primary liver cancer, represented mainly by hepatocellular carcinoma (HCC) and intrahepatic cholangiocarcinoma (CCA), is one of the most common and deadliest tumors worldwide. While surgical resection or liver transplantation are the best option in early disease stages, these tumors often present in advanced stages and systemic treatment is required to improve survival time. The emergence of immune checkpoint inhibitor (ICI) therapy has had a positive impact especially on the treatment of advanced cancers, thereby establishing immunotherapy as part of first-line treatment in HCC and CCA. Nevertheless, low response rates reflect on the usually cold or immunosuppressed tumor microenvironment of primary liver cancer. In this review, we aim to summarize mechanisms of resistance leading to tumor immune escape with a special focus on the composition of tumor microenvironment in both HCC and CCA, also reflecting on recent important developments in ICI combination therapy. Furthermore, we discuss how combination of ICIs with established primary liver cancer treatments (e.g. multikinase inhibitors and chemotherapy) as well as more complex combinations with state-of-the-art therapeutic concepts may reshape the tumor microenvironment, leading to higher response rates and long-lasting antitumor immunity for primary liver cancer patients.



Publication History

Accepted Manuscript online:
28 May 2024

Article published online:
21 June 2024

© 2024. The Author(s). This is an open access article published by Thieme under the terms of the Creative Commons Attribution License, permitting unrestricted use, distribution, and reproduction so long as the original work is properly cited. (https://creativecommons.org/licenses/by/4.0/)

Thieme Medical Publishers, Inc.
333 Seventh Avenue, 18th Floor, New York, NY 10001, USA

 
  • References

  • 1 Sung H, Ferlay J, Siegel RL. et al. Global Cancer Statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin 2021; 71 (03) 209-249
  • 2 Rumgay H, Arnold M, Ferlay J. et al. Global burden of primary liver cancer in 2020 and predictions to 2040. J Hepatol 2022; 77 (06) 1598-1606
  • 3 Arnold M, Abnet CC, Neale RE. et al. Global burden of 5 major types of gastrointestinal cancer. Gastroenterology 2020; 159 (01) 335-349.e15
  • 4 Lurje I, Czigany Z, Bednarsch J. et al. Treatment strategies for hepatocellular carcinoma – a multidisciplinary approach. Int J Mol Sci 2019; 20 (06) 1465
  • 5 Forner A, Vidili G, Rengo M, Bujanda L, Ponz-Sarvisé M, Lamarca A. Clinical presentation, diagnosis and staging of cholangiocarcinoma. Liver Int 2019; 39 (Suppl. 01) 98-107
  • 6 Llovet JM, Ricci S, Mazzaferro V. et al; SHARP Investigators Study Group. Sorafenib in advanced hepatocellular carcinoma. N Engl J Med 2008; 359 (04) 378-390
  • 7 Valle J, Wasan H, Palmer DH. et al; ABC-02 Trial Investigators. Cisplatin plus gemcitabine versus gemcitabine for biliary tract cancer. N Engl J Med 2010; 362 (14) 1273-1281
  • 8 Kudo M, Finn RS, Qin S. et al. Lenvatinib versus sorafenib in first-line treatment of patients with unresectable hepatocellular carcinoma: a randomised phase 3 non-inferiority trial. Lancet 2018; 391 (10126): 1163-1173
  • 9 Bruix J, Qin S, Merle P. et al; RESORCE Investigators. Regorafenib for patients with hepatocellular carcinoma who progressed on sorafenib treatment (RESORCE): a randomised, double-blind, placebo-controlled, phase 3 trial. Lancet 2017; 389 (10064): 56-66
  • 10 Abou-Alfa GK, Meyer T, Cheng AL. et al. Cabozantinib in patients with advanced and progressing hepatocellular carcinoma. N Engl J Med 2018; 379 (01) 54-63
  • 11 Zhu AX, Kang YK, Yen CJ. et al; REACH-2 Study Investigators. Ramucirumab after sorafenib in patients with advanced hepatocellular carcinoma and increased α-fetoprotein concentrations (REACH-2): a randomised, double-blind, placebo-controlled, phase 3 trial. Lancet Oncol 2019; 20 (02) 282-296
  • 12 Qin S, Li Q, Gu S. et al. Apatinib as second-line or later therapy in patients with advanced hepatocellular carcinoma (AHELP): a multicentre, double-blind, randomised, placebo-controlled, phase 3 trial. Lancet Gastroenterol Hepatol 2021; 6 (07) 559-568
  • 13 Lamarca A, Palmer DH, Wasan HS. et al; Advanced Biliary Cancer Working Group. Second-line FOLFOX chemotherapy versus active symptom control for advanced biliary tract cancer (ABC-06): a phase 3, open-label, randomised, controlled trial. Lancet Oncol 2021; 22 (05) 690-701
  • 14 Ledford H. Melanoma drug wins US approval. Nature 2011; 471 (7340) 561
  • 15 Hanaizi Z, van Zwieten-Boot B, Calvo G. et al. The European Medicines Agency review of ipilimumab (Yervoy) for the treatment of advanced (unresectable or metastatic) melanoma in adults who have received prior therapy: summary of the scientific assessment of the Committee for Medicinal Products for Human Use. Eur J Cancer 2012; 48 (02) 237-242
  • 16 Raedler LA. Opdivo (nivolumab): second PD-1 inhibitor receives FDA approval for unresectable or metastatic melanoma. Am Health Drug Benefits 2015; 8 (Spec Feature): 180-183
  • 17 Sul J, Blumenthal GM, Jiang X, He K, Keegan P, Pazdur R. FDA approval summary: pembrolizumab for the treatment of patients with metastatic non-small cell lung cancer whose tumors express programmed death-ligand 1. Oncologist 2016; 21 (05) 643-650
  • 18 El-Khoueiry AB, Sangro B, Yau T. et al. Nivolumab in patients with advanced hepatocellular carcinoma (CheckMate 040): an open-label, non-comparative, phase 1/2 dose escalation and expansion trial. Lancet 2017; 389 (10088): 2492-2502
  • 19 Zhu AX, Finn RS, Edeline J. et al; KEYNOTE-224 Investigators. Pembrolizumab in patients with advanced hepatocellular carcinoma previously treated with sorafenib (KEYNOTE-224): a non-randomised, open-label phase 2 trial. Lancet Oncol 2018; 19 (07) 940-952
  • 20 Yau T, Park JW, Finn RS. et al. Nivolumab versus sorafenib in advanced hepatocellular carcinoma (CheckMate 459): a randomised, multicentre, open-label, phase 3 trial. Lancet Oncol 2022; 23 (01) 77-90
  • 21 Finn RS, Ryoo BY, Merle P. et al; KEYNOTE-240 Investigators. Pembrolizumab as second-line therapy in patients with advanced hepatocellular carcinoma in KEYNOTE-240: a randomized, double-blind, Phase III trial. J Clin Oncol 2020; 38 (03) 193-202
  • 22 Burnet M. Cancer; a biological approach. I. The processes of control. BMJ 1957; 1 (5022) 779-786
  • 23 Dunn GP, Bruce AT, Ikeda H, Old LJ, Schreiber RD. Cancer immunoediting: from immunosurveillance to tumor escape. Nat Immunol 2002; 3 (11) 991-998
  • 24 Huntington ND, Cursons J, Rautela J. The cancer-natural killer cell immunity cycle. Nat Rev Cancer 2020; 20 (08) 437-454
  • 25 Speiser DE, Chijioke O, Schaeuble K, Münz C. CD4+ T cells in cancer. Nat Cancer 2023; 4 (03) 317-329
  • 26 Chen DS, Mellman I. Oncology meets immunology: the cancer-immunity cycle. Immunity 2013; 39 (01) 1-10
  • 27 Funes SC, Manrique de Lara A, Altamirano-Lagos MJ, Mackern-Oberti JP, Escobar-Vera J, Kalergis AM. Immune checkpoints and the regulation of tolerogenicity in dendritic cells: implications for autoimmunity and immunotherapy. Autoimmun Rev 2019; 18 (04) 359-368
  • 28 Starzer AM, Preusser M, Berghoff AS. Immune escape mechanisms and therapeutic approaches in cancer: the cancer-immunity cycle. Ther Adv Med Oncol 2022; 14: 17 588359221096219
  • 29 Wei SC, Duffy CR, Allison JP. Fundamental mechanisms of immune checkpoint blockade therapy. Cancer Discov 2018; 8 (09) 1069-1086
  • 30 Wojtukiewicz MZ, Rek MM, Karpowicz K. et al. Inhibitors of immune checkpoints-PD-1, PD-L1, CTLA-4-new opportunities for cancer patients and a new challenge for internists and general practitioners. Cancer Metastasis Rev 2021; 40 (03) 949-982
  • 31 Pentcheva-Hoang T, Egen JG, Wojnoonski K, Allison JP. B7-1 and B7-2 selectively recruit CTLA-4 and CD28 to the immunological synapse. Immunity 2004; 21 (03) 401-413
  • 32 Azarov I, Helmlinger G, Kosinsky Y, Peskov K. Elaborating on anti CTLA-4 mechanisms of action using an agent-based modeling approach. Front Appl Math Stat 2022; 8: 993581
  • 33 Sobhani N, Tardiel-Cyril DR, Davtyan A, Generali D, Roudi R, Li Y. CTLA-4 in regulatory T cells for cancer immunotherapy. Cancers (Basel) 2021; 13 (06) 1440
  • 34 Kudo M. Scientific rationale for combination immunotherapy of hepatocellular carcinoma with anti-PD-1/PD-L1 and anti-CTLA-4 antibodies. Liver Cancer 2019; 8 (06) 413-426
  • 35 Boussiotis VA. Molecular and biochemical aspects of the PD-1 checkpoint pathway. N Engl J Med 2016; 375 (18) 1767-1778
  • 36 Pauken KE, Torchia JA, Chaudhri A, Sharpe AH, Freeman GJ. Emerging concepts in PD-1 checkpoint biology. Semin Immunol 2021; 52: 101480
  • 37 Liu J, Chen Z, Li Y, Zhao W, Wu J, Zhang Z. PD-1/PD-L1 checkpoint inhibitors in tumor immunotherapy. Front Pharmacol 2021; 12: 731798
  • 38 Ziogas DC, Theocharopoulos C, Lialios P-P. et al. Beyond CTLA-4 and PD-1 inhibition: novel immune checkpoint molecules for melanoma treatment. Cancers (Basel) 2023; 15 (10) 2718
  • 39 Sauer N, Szlasa W, Jonderko L. et al. LAG-3 as a potent target for novel anticancer therapies of a wide range of tumors. Int J Mol Sci 2022; 23 (17) 9958
  • 40 Wolf Y, Anderson AC, Kuchroo VK. TIM3 comes of age as an inhibitory receptor. Nat Rev Immunol 2020; 20 (03) 173-185
  • 41 Sauer N, Janicka N, Szlasa W. et al. TIM-3 as a promising target for cancer immunotherapy in a wide range of tumors. Cancer Immunol Immunother 2023; 72 (11) 3405-3425
  • 42 FDA. Last Accessed May 15, 2024, at: https://www.fda.gov/drugs/resources-information-approved-drugs/fda-grants-accelerated-approval-nivolumab-hcc-previously-treated-sorafenib
  • 43 Kudo M, Finn RS, Edeline J. et al; KEYNOTE-224 Investigators. Updated efficacy and safety of KEYNOTE-224: a phase II study of pembrolizumab in patients with advanced hepatocellular carcinoma previously treated with sorafenib. Eur J Cancer 2022; 167: 1-12
  • 44 Merle P, Kudo M, Edeline J. et al. Pembrolizumab as second-line therapy for advanced hepatocellular carcinoma: longer term follow-up from the Phase 3 KEYNOTE-240 trial. Liver Cancer 2023; 12 (04) 309-320
  • 45 Qin S, Chen Z, Fang W. et al. Pembrolizumab versus placebo as second-line therapy in patients from Asia with advanced hepatocellular carcinoma: a randomized, double-blind, Phase III trial. J Clin Oncol 2023; 41 (07) 1434-1443
  • 46 Marabelle A, Le DT, Ascierto PA. et al. Efficacy of pembrolizumab in patients with noncolorectal high microsatellite instability/mismatch repair-deficient cancer: results from the Phase II KEYNOTE-158 study. J Clin Oncol 2020; 38 (01) 1-10
  • 47 Maio M, Ascierto PA, Manzyuk L. et al. Pembrolizumab in microsatellite instability high or mismatch repair deficient cancers: updated analysis from the phase II KEYNOTE-158 study. Ann Oncol 2022; 33 (09) 929-938
  • 48 Sharma P, Hu-Lieskovan S, Wargo JA, Ribas A. Primary, adaptive, and acquired resistance to cancer immunotherapy. Cell 2017; 168 (04) 707-723
  • 49 Mellman I, Chen DS, Powles T, Turley SJ. The cancer-immunity cycle: Indication, genotype, and immunotype. Immunity 2023; 56 (10) 2188-2205
  • 50 Galon J, Bruni D. Approaches to treat immune hot, altered and cold tumours with combination immunotherapies. Nat Rev Drug Discov 2019; 18 (03) 197-218
  • 51 Camus M, Tosolini M, Mlecnik B. et al. Coordination of intratumoral immune reaction and human colorectal cancer recurrence. Cancer Res 2009; 69 (06) 2685-2693
  • 52 Kirchhammer N, Trefny MP, Auf der Maur P, Läubli H, Zippelius A. Combination cancer immunotherapies: emerging treatment strategies adapted to the tumor microenvironment. Sci Transl Med 2022; 14 (670) eabo3605
  • 53 Maleki Vareki S. High and low mutational burden tumors versus immunologically hot and cold tumors and response to immune checkpoint inhibitors. J Immunother Cancer 2018; 6 (01) 157
  • 54 Melssen MM, Sheybani ND, Leick KM, Slingluff Jr CL. Barriers to immune cell infiltration in tumors. J Immunother Cancer 2023; 11 (04) e006401
  • 55 Wang Z, Wang Y, Gao P, Ding J. Immune checkpoint inhibitor resistance in hepatocellular carcinoma. Cancer Lett 2023; 555: 216038
  • 56 Tao S, Liang S, Zeng T, Yin D. Epigenetic modification-related mechanisms of hepatocellular carcinoma resistance to immune checkpoint inhibition. Front Immunol 2023; 13: 1043667
  • 57 Han X, Sun Q, Xu M. et al. Unraveling the complexities of immune checkpoint inhibitors in hepatocellular carcinoma. Semin Liver Dis 2023; 43 (04) 383-401
  • 58 Zhang Z, Lu M, Qin Y. et al. Neoantigen: a new breakthrough in tumor immunotherapy. Front Immunol 2021; 12: 672356
  • 59 Bonaventura P, Shekarian T, Alcazer V. et al. Cold tumors: a therapeutic challenge for immunotherapy. Front Immunol 2019; 10: 168
  • 60 Jardim DL, Goodman A, de Melo Gagliato D, Kurzrock R. The challenges of tumor mutational burden as an immunotherapy biomarker. Cancer Cell 2021; 39 (02) 154-173
  • 61 Samstein RM, Lee CH, Shoushtari AN. et al. Tumor mutational load predicts survival after immunotherapy across multiple cancer types. Nat Genet 2019; 51 (02) 202-206
  • 62 Chan TA, Yarchoan M, Jaffee E. et al. Development of tumor mutation burden as an immunotherapy biomarker: utility for the oncology clinic. Ann Oncol 2019; 30 (01) 44-56
  • 63 McGrail DJ, Pilié PG, Rashid NU. et al. High tumor mutation burden fails to predict immune checkpoint blockade response across all cancer types. Ann Oncol 2021; 32 (05) 661-672
  • 64 Wong M, Kim JT, Cox B. et al. Evaluation of tumor mutational burden in small early hepatocellular carcinoma and progressed hepatocellular carcinoma. Hepat Oncol 2021; 8 (04) HEP39
  • 65 Zheng Y, Qin Y, Gong W. et al. Specific genomic alterations and prognostic analysis of perihilar cholangiocarcinoma and distal cholangiocarcinoma. J Gastrointest Oncol 2021; 12 (06) 2631-2642
  • 66 Wong CN, Fessas P, Dominy K. et al. Qualification of tumour mutational burden by targeted next-generation sequencing as a biomarker in hepatocellular carcinoma. Liver Int 2021; 41 (01) 192-203
  • 67 Yang X, Lian B, Zhang N. et al. Genomic characterization and immunotherapy for microsatellite instability-high in cholangiocarcinoma. BMC Med 2024; 22 (01) 42
  • 68 Nishida N, Aoki T, Morita M. et al. Non-inflamed tumor microenvironment and methylation/downregulation of antigen-presenting machineries in cholangiocarcinoma. Cancers (Basel) 2023; 15 (08) 2379
  • 69 Maggs L, Sadagopan A, Moghaddam AS, Ferrone S. HLA class I antigen processing machinery defects in antitumor immunity and immunotherapy. Trends Cancer 2021; 7 (12) 1089-1101
  • 70 Del Prete A, Salvi V, Soriani A. et al. Dendritic cell subsets in cancer immunity and tumor antigen sensing. Cell Mol Immunol 2023; 20 (05) 432-447
  • 71 Lurje I, Hammerich L, Tacke F. Dendritic cell and T cell crosstalk in liver fibrogenesis and hepatocarcinogenesis: implications for prevention and therapy of liver cancer. Int J Mol Sci 2020; 21 (19) 7378
  • 72 Deldar Abad Paskeh M, Mirzaei S, Ashrafizadeh M, Zarrabi A, Sethi G. Wnt/β-catenin signaling as a driver of hepatocellular carcinoma progression: an emphasis on molecular pathways. J Hepatocell Carcinoma 2021; 8: 1415-1444
  • 73 de La Coste A, Romagnolo B, Billuart P. et al. Somatic mutations of the beta-catenin gene are frequent in mouse and human hepatocellular carcinomas. Proc Natl Acad Sci U S A 1998; 95 (15) 8847-8851
  • 74 Harding JJ, Nandakumar S, Armenia J. et al. Prospective genotyping of hepatocellular carcinoma: clinical implications of next-generation sequencing for matching patients to targeted and immune therapies. Clin Cancer Res 2019; 25 (07) 2116-2126
  • 75 Mortezaee K. WNT/β-catenin regulatory roles on PD-(L)1 and immunotherapy responses. Clin Exp Med 2024; 24 (01) 15
  • 76 Kotiyal S, Evason KJ. Exploring the interplay of telomerase reverse transcriptase and β-catenin in hepatocellular carcinoma. Cancers (Basel) 2021; 13 (16) 4202
  • 77 Akhmetshina A, Palumbo K, Dees C. et al. Activation of canonical Wnt signalling is required for TGF-β-mediated fibrosis. Nat Commun 2012; 3: 735
  • 78 Chen J, Gingold JA, Su X. Immunomodulatory TGF-β signaling in hepatocellular carcinoma. Trends Mol Med 2019; 25 (11) 1010-1023
  • 79 Muto S, Ozaki Y, Yamaguchi H. et al. Tumor β-catenin expression is associated with immune evasion in non-small cell lung cancer with high tumor mutation burden. Oncol Lett 2021; 21 (03) 203
  • 80 Ruiz de Galarreta M, Bresnahan E, Molina-Sánchez P. et al. β-Catenin activation promotes immune escape and resistance to anti-PD-1 therapy in hepatocellular carcinoma. Cancer Discov 2019; 9 (08) 1124-1141
  • 81 Zhu AX, Abbas AR, de Galarreta MR. et al. Molecular correlates of clinical response and resistance to atezolizumab in combination with bevacizumab in advanced hepatocellular carcinoma. Nat Med 2022; 28 (08) 1599-1611
  • 82 Kuwano A, Yada M, Narutomi F. et al. Therapeutic efficacy of atezolizumab plus bevacizumab for hepatocellular carcinoma with WNT/β-catenin signal activation. Oncol Lett 2022; 24 (01) 216
  • 83 Neely J, Yao J, Kudo M. et al. Abstract 2145: genomic and transcriptomic analyses related to the clinical efficacy of first-line nivolumab in advanced hepatocellular carcinoma from the phase 3 CheckMate 459 trial. Cancer Res 2022; 82: 2145-2145
  • 84 Montironi C, Castet F, Haber PK. et al. Inflamed and non-inflamed classes of HCC: a revised immunogenomic classification. Gut 2023; 72 (01) 129-140
  • 85 Xiao Q, Werner J, Venkatachalam N, Boonekamp KE, Ebert MP, Zhan T. Cross-talk between p53 and Wnt signaling in cancer. Biomolecules 2022; 12 (03) 453
  • 86 Peng W, Chen JQ, Liu C. et al. Loss of PTEN promotes resistance to T cell-mediated immunotherapy. Cancer Discov 2016; 6 (02) 202-216
  • 87 Tian L-Y, Smit DJ, Jücker M. The role of PI3K/AKT/mTOR signaling in hepatocellular carcinoma metabolism. Int J Mol Sci 2023; 24 (03) 2652
  • 88 Yothaisong S, Dokduang H, Techasen A. et al. Increased activation of PI3K/AKT signaling pathway is associated with cholangiocarcinoma metastasis and PI3K/mTOR inhibition presents a possible therapeutic strategy. Tumour Biol 2013; 34 (06) 3637-3648
  • 89 Sequera C, Grattarola M, Holczbauer A. et al. MYC and MET cooperatively drive hepatocellular carcinoma with distinct molecular traits and vulnerabilities. Cell Death Dis 2022; 13 (11) 994
  • 90 Dhanasekaran R, Hansen AS, Park J. et al. MYC overexpression drives immune evasion in hepatocellular carcinoma that is reversible through restoration of proinflammatory macrophages. Cancer Res 2023; 83 (04) 626-640
  • 91 Liu N, Steer CJ, Song G. MicroRNA-206 enhances antitumor immunity by disrupting the communication between malignant hepatocytes and regulatory T cells in c-Myc mice. Hepatology 2022; 76 (01) 32-47
  • 92 Sabe H. KRAS, MYC, and ARF6: inseparable relationships cooperatively promote cancer malignancy and immune evasion. Cell Commun Signal 2023; 21 (01) 106
  • 93 Martin-Serrano MA, Kepecs B, Torres-Martin M. et al. Novel microenvironment-based classification of intrahepatic cholangiocarcinoma with therapeutic implications. Gut 2023; 72 (04) 736-748
  • 94 Saha SK, Parachoniak CA, Bardeesy N. IDH mutations in liver cell plasticity and biliary cancer. Cell Cycle 2014; 13 (20) 3176-3182
  • 95 Wu MJ, Shi L, Dubrot J. et al. Mutant IDH inhibits IFNγ-TET2 signaling to promote immunoevasion and tumor maintenance in cholangiocarcinoma. Cancer Discov 2022; 12 (03) 812-835
  • 96 Ferrín G, Guerrero M, Amado V, Rodríguez-Perálvarez M, De la Mata M. Activation of mTOR signaling pathway in hepatocellular carcinoma. Int J Mol Sci 2020; 21 (04) 1266
  • 97 Horvath CM. The Jak-STAT pathway stimulated by interferon gamma. Sci STKE 2004; 2004 (260) tr8
  • 98 Hin Tang JJ, Hao Thng DK, Lim JJ, Toh TB. JAK/STAT signaling in hepatocellular carcinoma. Hepat Oncol 2020; 7 (01) HEP18
  • 99 Vignali DAA, Collison LW, Workman CJ. How regulatory T cells work. Nat Rev Immunol 2008; 8 (07) 523-532
  • 100 Liu D, Heij LR, Czigany Z. et al. The role of tumor-infiltrating lymphocytes in cholangiocarcinoma. J Exp Clin Cancer Res 2022; 41 (01) 127
  • 101 Yi Y, He H-W, Wang J-X. et al. The functional impairment of HCC-infiltrating γδ T cells, partially mediated by regulatory T cells in a TGFβ- and IL-10-dependent manner. J Hepatol 2013; 58 (05) 977-983
  • 102 Chen Y, Ma L, He Q, Zhang S, Zhang C, Jia W. TGF-β1 expression is associated with invasion and metastasis of intrahepatic cholangiocarcinoma. Biol Res 2015; 48 (01) 26
  • 103 Louis C, Ferlier T, Leroux R. et al. TGFβ-induced circLTBP2 predicts a poor prognosis in intrahepatic cholangiocarcinoma and mediates gemcitabine resistance by sponging miR-338-3p. JHEP Rep Innov Hepatol 2023; 5 (12) 100900
  • 104 Peng L, Yuan X-Q, Zhang C-Y. et al. High TGF-β1 expression predicts poor disease prognosis in hepatocellular carcinoma patients. Oncotarget 2017; 8 (21) 34387-34397
  • 105 Lim HX, Kim TS, Poh CL. Understanding the differentiation, expansion, recruitment and suppressive activities of myeloid-derived suppressor cells in cancers. Int J Mol Sci 2020; 21 (10) 3599
  • 106 Wu Y, Yi M, Niu M, Mei Q, Wu K. Myeloid-derived suppressor cells: an emerging target for anticancer immunotherapy. Mol Cancer 2022; 21 (01) 184
  • 107 Kuang D-M, Zhao Q, Peng C. et al. Activated monocytes in peritumoral stroma of hepatocellular carcinoma foster immune privilege and disease progression through PD-L1. J Exp Med 2009; 206 (06) 1327-1337
  • 108 Zhou S, Zhao Z, Zhong H. et al. The role of myeloid-derived suppressor cells in liver cancer. Discov Oncol 2023; 14 (01) 77
  • 109 Lin Y, Li B, Yang X. et al. Fibroblastic FAP promotes intrahepatic cholangiocarcinoma growth via MDSCs recruitment. Neoplasia 2019; 21 (12) 1133-1142
  • 110 Lin Y, Cai Q, Chen Y. et al. CAFs shape myeloid-derived suppressor cells to promote stemness of intrahepatic cholangiocarcinoma through 5-lipoxygenase. Hepatology 2022; 75 (01) 28-42
  • 111 Kiss M, Vande Walle L, Saavedra PHV. et al. IL1β promotes immune suppression in the tumor microenvironment independent of the inflammasome and gasdermin D. Cancer Immunol Res 2021; 9 (03) 309-323
  • 112 Miller H, Czigany Z, Lurje I. et al. Impact of angiogenesis- and hypoxia-associated polymorphisms on tumor recurrence in patients with hepatocellular carcinoma undergoing surgical resection. Cancers (Basel) 2020; 12 (12) 3826
  • 113 Lurje I, Czigany Z, Bednarsch J. et al. Genetic variant of CXCR1 (rs2234671) associates with clinical outcome in perihilar cholangiocarcinoma. Liver Cancer 2022; 11 (02) 162-173
  • 114 Lurje I, Gaisa NT, Dahl E. et al. Genetic polymorphisms in interleukin-1β (rs1143634) and interleukin-8 (rs4073) are associated with survival after resection of intrahepatic cholangiocarcinoma. Sci Rep 2023; 13 (01) 12283
  • 115 Hammerich L, Tacke F. Hepatic inflammatory responses in liver fibrosis. Nat Rev Gastroenterol Hepatol 2023; 20 (10) 633-646
  • 116 Mantovani A, Sica A, Sozzani S, Allavena P, Vecchi A, Locati M. The chemokine system in diverse forms of macrophage activation and polarization. Trends Immunol 2004; 25 (12) 677-686
  • 117 Yunna C, Mengru H, Lei W, Weidong C. Macrophage M1/M2 polarization. Eur J Pharmacol 2020; 877: 173090
  • 118 Kohlhepp MS, Liu H, Tacke F, Guillot A. The contradictory roles of macrophages in non-alcoholic fatty liver disease and primary liver cancer-Challenges and opportunities. Front Mol Biosci 2023; 10: 1129831
  • 119 Pan Y, Yu Y, Wang X, Zhang T. Tumor-associated macrophages in tumor immunity. Front Immunol 2020; 11: 583084
  • 120 Ruf B, Bruhns M, Babaei S. et al. Tumor-associated macrophages trigger MAIT cell dysfunction at the HCC invasive margin. Cell 2023; 186 (17) 3686-3705.e32
  • 121 Hasita H, Komohara Y, Okabe H. et al. Significance of alternatively activated macrophages in patients with intrahepatic cholangiocarcinoma. Cancer Sci 2010; 101 (08) 1913-1919
  • 122 Sun X, Zhang J, Hou Z, Han Q, Zhang C, Tian Z. miR-146a is directly regulated by STAT3 in human hepatocellular carcinoma cells and involved in anti-tumor immune suppression. Cell Cycle 2015; 14 (02) 243-252
  • 123 Wang Y, Shen Y, Wang S, Shen Q, Zhou X. The role of STAT3 in leading the crosstalk between human cancers and the immune system. Cancer Lett 2018; 415: 117-128
  • 124 Chamseddine AN, Assi T, Mir O, Chouaib S. Modulating tumor-associated macrophages to enhance the efficacy of immune checkpoint inhibitors: a TAM-pting approach. Pharmacol Ther 2022; 231: 107986
  • 125 Affo S, Filliol A, Gores GJ, Schwabe RF. Fibroblasts in liver cancer: functions and therapeutic translation. Lancet Gastroenterol Hepatol 2023; 8 (08) 748-759
  • 126 Mederacke I, Hsu CC, Troeger JS. et al. Fate tracing reveals hepatic stellate cells as dominant contributors to liver fibrosis independent of its aetiology. Nat Commun 2013; 4: 2823
  • 127 Ping Q, Yan R, Cheng X. et al. Correction: cancer-associated fibroblasts: overview, progress, challenges, and directions. Cancer Gene Ther 2021; 28 (09) 1074
  • 128 Mao X, Xu J, Wang W. et al. Crosstalk between cancer-associated fibroblasts and immune cells in the tumor microenvironment: new findings and future perspectives. Mol Cancer 2021; 20 (01) 131
  • 129 Affo S, Nair A, Brundu F. et al. Promotion of cholangiocarcinoma growth by diverse cancer-associated fibroblast subpopulations. Cancer Cell 2021; 39 (06) 866-882.e11
  • 130 Filliol A, Saito Y, Nair A. et al. Opposing roles of hepatic stellate cell subpopulations in hepatocarcinogenesis. Nature 2022; 610 (7931) 356-365
  • 131 Koyama S, Akbay EA, Li YY. et al. Adaptive resistance to therapeutic PD-1 blockade is associated with upregulation of alternative immune checkpoints. Nat Commun 2016; 7: 10501
  • 132 Katagata M, Okayama H, Nakajima S. et al. TIM-3 expression and M2 polarization of macrophages in the TGFβ-activated tumor microenvironment in colorectal cancer. Cancers (Basel) 2023; 15 (20) 4943
  • 133 Woo S-R, Turnis ME, Goldberg MV. et al. Immune inhibitory molecules LAG-3 and PD-1 synergistically regulate T-cell function to promote tumoral immune escape. Cancer Res 2012; 72 (04) 917-927
  • 134 Guo M, Yuan F, Qi F. et al. Expression and clinical significance of LAG-3, FGL1, PD-L1 and CD8+T cells in hepatocellular carcinoma using multiplex quantitative analysis. J Transl Med 2020; 18 (01) 306
  • 135 Yan W, Liu X, Ma H. et al. Tim-3 fosters HCC development by enhancing TGF-β-mediated alternative activation of macrophages. Gut 2015; 64 (10) 1593-1604
  • 136 Hsu CL, Schnabl B. The gut-liver axis and gut microbiota in health and liver disease. Nat Rev Microbiol 2023; 21 (11) 719-733
  • 137 Harkus U, Wankell M, Palamuthusingam P, McFarlane C, Hebbard L. Immune checkpoint inhibitors in HCC: cellular, molecular and systemic data. Semin Cancer Biol 2022; 86 (Pt 3): 799-815
  • 138 Wen Y, Lambrecht J, Ju C, Tacke F. Hepatic macrophages in liver homeostasis and diseases-diversity, plasticity and therapeutic opportunities. Cell Mol Immunol 2021; 18 (01) 45-56
  • 139 Pillarisetty VG, Shah AB, Miller G, Bleier JI, DeMatteo RP. Liver dendritic cells are less immunogenic than spleen dendritic cells because of differences in subtype composition. J Immunol 2004; 172 (02) 1009-1017
  • 140 Llovet JM, Kelley RK, Villanueva A. et al. Hepatocellular carcinoma. Nat Rev Dis Primers 2021; 7 (01) 6
  • 141 Lurje I, Gaisa NT, Weiskirchen R, Tacke F. Mechanisms of organ fibrosis: emerging concepts and implications for novel treatment strategies. Mol Aspects Med 2023; 92: 101191
  • 142 Kirstein MM, Vogel A. Epidemiology and risk factors of cholangiocarcinoma. Visc Med 2016; 32 (06) 395-400
  • 143 Wong VW, Ekstedt M, Wong GL, Hagström H. Changing epidemiology, global trends and implications for outcomes of NAFLD. J Hepatol 2023; 79 (03) 842-852
  • 144 Targher G, Byrne CD, Tilg H. MASLD: a systemic metabolic disorder with cardiovascular and malignant complications. Gut 2024; 73 (04) 691-702
  • 145 Rinella ME, Lazarus JV, Ratziu V. et al; NAFLD Nomenclature consensus group. A multisociety Delphi consensus statement on new fatty liver disease nomenclature. Ann Hepatol 2024; 29 (01) 101133
  • 146 Llovet JM, Castet F, Heikenwalder M. et al. Immunotherapies for hepatocellular carcinoma. Nat Rev Clin Oncol 2022; 19 (03) 151-172
  • 147 Pinter M, Scheiner B, Peck-Radosavljevic M. Immunotherapy for advanced hepatocellular carcinoma: a focus on special subgroups. Gut 2021; 70 (01) 204-214
  • 148 Llovet JM, Heikenwalder M. Atezolizumab plus bevacizumab in advanced HCC: efficacy in NASH-specific etiology. Gastroenterology 2023; 165 (05) 1308-1310
  • 149 Llovet JM, Willoughby CE, Singal AG. et al. Nonalcoholic steatohepatitis-related hepatocellular carcinoma: pathogenesis and treatment. Nat Rev Gastroenterol Hepatol 2023; 20 (08) 487-503
  • 150 Koda Y, Teratani T, Chu PS. et al. CD8+ tissue-resident memory T cells promote liver fibrosis resolution by inducing apoptosis of hepatic stellate cells. Nat Commun 2021; 12 (01) 4474
  • 151 Dudek M, Pfister D, Donakonda S. et al. Auto-aggressive CXCR6+ CD8 T cells cause liver immune pathology in NASH. Nature 2021; 592 (7854) 444-449
  • 152 Kotsiliti E, Leone V, Schuehle S. et al. Intestinal B cells license metabolic T-cell activation in NASH microbiota/antigen-independently and contribute to fibrosis by IgA-FcR signalling. J Hepatol 2023; 79 (02) 296-313
  • 153 Ma C, Kesarwala AH, Eggert T. et al. NAFLD causes selective CD4(+) T lymphocyte loss and promotes hepatocarcinogenesis. Nature 2016; 531 (7593) 253-257
  • 154 Krenkel O, Puengel T, Govaere O. et al. Therapeutic inhibition of inflammatory monocyte recruitment reduces steatohepatitis and liver fibrosis. Hepatology 2018; 67 (04) 1270-1283
  • 155 Krenkel O, Hundertmark J, Abdallah AT. et al. Myeloid cells in liver and bone marrow acquire a functionally distinct inflammatory phenotype during obesity-related steatohepatitis. Gut 2020; 69 (03) 551-563
  • 156 Deczkowska A, David E, Ramadori P. et al. XCR1+ type 1 conventional dendritic cells drive liver pathology in non-alcoholic steatohepatitis. Nat Med 2021; 27 (06) 1043-1054
  • 157 Guilliams M, Bonnardel J, Haest B. et al. Spatial proteogenomics reveals distinct and evolutionarily conserved hepatic macrophage niches. Cell 2022; 185 (02) 379-396.e38
  • 158 Guillot A, Winkler M, Silva Afonso M. et al. Mapping the hepatic immune landscape identifies monocytic macrophages as key drivers of steatohepatitis and cholangiopathy progression. Hepatology 2023; 78 (01) 150-166
  • 159 Weber J. Immune checkpoint proteins: a new therapeutic paradigm for cancer–preclinical background: CTLA-4 and PD-1 blockade. Semin Oncol 2010; 37 (05) 430-439
  • 160 Pfister D, Núñez NG, Pinyol R. et al. NASH limits anti-tumour surveillance in immunotherapy-treated HCC. Nature 2021; 592 (7854) 450-456
  • 161 Wabitsch S, McCallen JD, Kamenyeva O. et al. Metformin treatment rescues CD8+ T-cell response to immune checkpoint inhibitor therapy in mice with NAFLD. J Hepatol 2022; 77 (03) 748-760
  • 162 Inomata M, Matsumoto M, Takata N. et al. Peripheral CD4 memory T cells predict the efficacy of immune checkpoint inhibitor therapy in patients with non-small cell lung cancer. Sci Rep 2023; 13 (01) 10807
  • 163 Meyer T, Galani S, Lopes A, Vogel A. Aetiology of liver disease and response to immune checkpoint inhibitors: an updated meta-analysis confirms benefit in those with non-viral liver disease. J Hepatol 2023; 79 (02) e73-e76
  • 164 Espinoza M, Muquith M, Lim M, Zhu H, Singal AG, Hsiehchen D. Disease etiology and outcomes after atezolizumab plus bevacizumab in hepatocellular carcinoma: post-hoc analysis of IMbrave150. Gastroenterology 2023; 165 (01) 286-288.e4
  • 165 Jost-Brinkmann F, Demir M, Wree A. et al. Atezolizumab plus bevacizumab in unresectable hepatocellular carcinoma: results from a German real-world cohort. Aliment Pharmacol Ther 2023; 57 (11) 1313-1325
  • 166 Wang Z, Aguilar EG, Luna JI. et al. Paradoxical effects of obesity on T cell function during tumor progression and PD-1 checkpoint blockade. Nat Med 2019; 25 (01) 141-151
  • 167 Ringel AE, Drijvers JM, Baker GJ. et al. Obesity shapes metabolism in the tumor microenvironment to suppress anti-tumor immunity. Cell 2020; 183 (07) 1848-1866.e26
  • 168 Paternostro R, Sieghart W, Trauner M, Pinter M. Cancer and hepatic steatosis. ESMO Open 2021; 6 (04) 100185
  • 169 Mao J, Wang D, Long J. et al. Gut microbiome is associated with the clinical response to anti-PD-1 based immunotherapy in hepatobiliary cancers. J Immunother Cancer 2021; 9 (12) 9
  • 170 Muscolino P, Granata B, Omero F. et al. Potential predictive role of gut microbiota to immunotherapy in HCC patients: a brief review. Front Oncol 2023; 13: 1247614
  • 171 Pinato DJ, Li X, Mishra-Kalyani P. et al. Association between antibiotics and adverse oncological outcomes in patients receiving targeted or immune-based therapy for hepatocellular carcinoma. JHEP Rep Innov Hepatol 2023; 5 (06) 100747
  • 172 Lee MS, Ryoo BY, Hsu CH. et al; GO30140 Investigators. Atezolizumab with or without bevacizumab in unresectable hepatocellular carcinoma (GO30140): an open-label, multicentre, phase 1b study. Lancet Oncol 2020; 21 (06) 808-820
  • 173 Qin S, Kudo M, Meyer T. et al. Tislelizumab vs sorafenib as first-line treatment for unresectable hepatocellular carcinoma: a phase 3 randomized clinical trial. JAMA Oncol 2023; 9 (12) 1651-1659
  • 174 Rimassa L, Finn RS, Sangro B. Combination immunotherapy for hepatocellular carcinoma. J Hepatol 2023; 79 (02) 506-515
  • 175 Chiu DK, Yuen VW, Cheu JW. et al. Hepatocellular carcinoma cells up-regulate PVRL1, stabilizing PVR and inhibiting the cytotoxic T-cell response via TIGIT to mediate tumor resistance to PD1 inhibitors in mice. Gastroenterology 2020; 159 (02) 609-623
  • 176 Peggs KS, Quezada SA, Chambers CA, Korman AJ, Allison JP. Blockade of CTLA-4 on both effector and regulatory T cell compartments contributes to the antitumor activity of anti-CTLA-4 antibodies. J Exp Med 2009; 206 (08) 1717-1725
  • 177 Postow MA, Chesney J, Pavlick AC. et al. Nivolumab and ipilimumab versus ipilimumab in untreated melanoma. N Engl J Med 2015; 372 (21) 2006-2017
  • 178 Wolchok JD, Kluger H, Callahan MK. et al. Nivolumab plus ipilimumab in advanced melanoma. N Engl J Med 2013; 369 (02) 122-133
  • 179 Lenz HJ, Van Cutsem E, Luisa Limon M. et al. First-line nivolumab plus low-dose ipilimumab for microsatellite instability-high/mismatch repair-deficient metastatic colorectal cancer: the phase II CheckMate 142 study. J Clin Oncol 2022; 40 (02) 161-170
  • 180 Hellmann MD, Paz-Ares L, Bernabe Caro R. et al. Nivolumab plus ipilimumab in advanced non-small-cell lung cancer. N Engl J Med 2019; 381 (21) 2020-2031
  • 181 Yau T, Kang YK, Kim TY. et al. Efficacy and safety of nivolumab plus ipilimumab in patients with advanced hepatocellular carcinoma previously treated with sorafenib: the CheckMate 040 randomized clinical trial. JAMA Oncol 2020; 6 (11) e204564
  • 182 Saung MT, Pelosof L, Casak S. et al. FDA approval summary: nivolumab plus ipilimumab for the treatment of patients with hepatocellular carcinoma previously treated with sorafenib. Oncologist 2021; 26 (09) 797-806
  • 183 Sangro B, Yau T, El-Khoueiry AB. et al. Exposure-response analysis for nivolumab plus ipilimumab combination therapy in patients with advanced hepatocellular carcinoma (CheckMate 040). Clin Transl Sci 2023; 16 (08) 1445-1457
  • 184 Kelley RK, Sangro B, Harris W. et al. Safety, efficacy, and pharmacodynamics of tremelimumab plus durvalumab for patients with unresectable hepatocellular carcinoma: randomized expansion of a Phase I/II study. J Clin Oncol 2021; 39 (27) 2991-3001
  • 185 Abou-Alfa GK, Lau G, Kudo M. et al. Tremelimumab plus durvalumab in unresectable hepatocellular carcinoma. NEJM Evid 2022; 1 (08) EVIDoa2100070
  • 186 Greten TF, Abou-Alfa GK, Cheng AL. et al. Society for Immunotherapy of Cancer (SITC) clinical practice guideline on immunotherapy for the treatment of hepatocellular carcinoma. J Immunother Cancer 2021; 9 (09) e002794
  • 187 Vogel A, Martinelli E. ESMO Guidelines Committee. Electronic address: clinicalguidelines@esmo.org, ESMO Guidelines Committee. Updated treatment recommendations for hepatocellular carcinoma (HCC) from the ESMO Clinical Practice Guidelines. Ann Oncol 2021; 32 (06) 801-805
  • 188 Reig M, Forner A, Rimola J. et al. BCLC strategy for prognosis prediction and treatment recommendation: the 2022 update. J Hepatol 2022; 76 (03) 681-693
  • 189 Klein O, Kee D, Nagrial A. et al. Evaluation of combination nivolumab and ipilimumab immunotherapy in patients with advanced biliary tract cancers: subgroup analysis of a Phase 2 Nonrandomized Clinical Trial. JAMA Oncol 2020; 6 (09) 1405-1409
  • 190 Kim RD, Chung V, Alese OB. et al. A phase 2 multi-institutional study of nivolumab for patients with advanced refractory biliary tract cancer. JAMA Oncol 2020; 6 (06) 888-894
  • 191 Doki Y, Ueno M, Hsu CH. et al. Tolerability and efficacy of durvalumab, either as monotherapy or in combination with tremelimumab, in patients from Asia with advanced biliary tract, esophageal, or head-and-neck cancer. Cancer Med 2022; 11 (13) 2550-2560
  • 192 Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation. Cell 2011; 144 (05) 646-674
  • 193 Morse MA, Sun W, Kim R. et al. The role of angiogenesis in hepatocellular carcinoma. Clin Cancer Res 2019; 25 (03) 912-920
  • 194 Khan KA, Kerbel RS. Improving immunotherapy outcomes with anti-angiogenic treatments and vice versa. Nat Rev Clin Oncol 2018; 15 (05) 310-324
  • 195 Kudo M. Scientific rationale for combined immunotherapy with PD-1/PD-L1 antibodies and VEGF inhibitors in advanced hepatocellular carcinoma. Cancers (Basel) 2020; 12 (05) 1089
  • 196 Allen E, Jabouille A, Rivera LB. et al. Combined antiangiogenic and anti-PD-L1 therapy stimulates tumor immunity through HEV formation. Sci Transl Med 2017; 9 (385) eaak9679
  • 197 Motzer RJ, Penkov K, Haanen J. et al. Avelumab plus axitinib versus sunitinib for advanced renal-cell carcinoma. N Engl J Med 2019; 380 (12) 1103-1115
  • 198 Choueiri TK, Powles T, Burotto M. et al; CheckMate 9ER Investigators. Nivolumab plus cabozantinib versus sunitinib for advanced renal-cell carcinoma. N Engl J Med 2021; 384 (09) 829-841
  • 199 Finn RS, Qin S, Ikeda M. et al; IMbrave150 Investigators. Atezolizumab plus bevacizumab in unresectable hepatocellular carcinoma. N Engl J Med 2020; 382 (20) 1894-1905
  • 200 Cheng AL, Qin S, Ikeda M. et al. Updated efficacy and safety data from IMbrave150: atezolizumab plus bevacizumab vs. sorafenib for unresectable hepatocellular carcinoma. J Hepatol 2022; 76 (04) 862-873
  • 201 Ren Z, Xu J, Bai Y. et al; ORIENT-32 Study Group. Sintilimab plus a bevacizumab biosimilar (IBI305) versus sorafenib in unresectable hepatocellular carcinoma (ORIENT-32): a randomised, open-label, phase 2-3 study. Lancet Oncol 2021; 22 (07) 977-990
  • 202 Qin S, Chen M, Cheng AL. et al; IMbrave050 Investigators. Atezolizumab plus bevacizumab versus active surveillance in patients with resected or ablated high-risk hepatocellular carcinoma (IMbrave050): a randomised, open-label, multicentre, phase 3 trial. Lancet 2023; 402 (10415): 1835-1847
  • 203 Kelley RK, Rimassa L, Cheng AL. et al. Cabozantinib plus atezolizumab versus sorafenib for advanced hepatocellular carcinoma (COSMIC-312): a multicentre, open-label, randomised, phase 3 trial. Lancet Oncol 2022; 23 (08) 995-1008
  • 204 Llovet JM, Kudo M, Merle P. et al; LEAP-002 Investigators. Lenvatinib plus pembrolizumab versus lenvatinib plus placebo for advanced hepatocellular carcinoma (LEAP-002): a randomised, double-blind, phase 3 trial. Lancet Oncol 2023; 24 (12) 1399-1410
  • 205 Qin S, Chan SL, Gu S. et al; CARES-310 Study Group. Camrelizumab plus rivoceranib versus sorafenib as first-line therapy for unresectable hepatocellular carcinoma (CARES-310): a randomised, open-label, international phase 3 study. Lancet 2023; 402 (10408): 1133-1146
  • 206 Kim HD, Jung S, Lim HY. et al. Regorafenib plus nivolumab in unresectable hepatocellular carcinoma: the phase 2 RENOBATE trial. Nat Med 2024; 30 (03) 699-707
  • 207 Wang Y, Chen T, Li K. et al. Recent advances in the mechanism research and clinical treatment of anti-angiogenesis in biliary tract cancer. Front Oncol 2021; 11: 777617
  • 208 Lin J, Yang X, Long J. et al. Pembrolizumab combined with lenvatinib as non-first-line therapy in patients with refractory biliary tract carcinoma. Hepatobiliary Surg Nutr 2020; 9 (04) 414-424
  • 209 European Association for the Study of the Liver. . Electronic address: easloffice@easloffice.eu; European Association for the Study of the Liver. . EASL Clinical Practice Guidelines: management of hepatocellular carcinoma. J Hepatol 2018; 69: 182-236
  • 210 Terenzi A, Pirker C, Keppler BK, Berger W. Anticancer metal drugs and immunogenic cell death. J Inorg Biochem 2016; 165: 71-79
  • 211 de Biasi AR, Villena-Vargas J, Adusumilli PS. Cisplatin-induced antitumor immunomodulation: a review of preclinical and clinical evidence. Clin Cancer Res 2014; 20 (21) 5384-5391
  • 212 Tesniere A, Schlemmer F, Boige V. et al. Immunogenic death of colon cancer cells treated with oxaliplatin. Oncogene 2010; 29 (04) 482-491
  • 213 Suzuki E, Kapoor V, Jassar AS, Kaiser LR, Albelda SM. Gemcitabine selectively eliminates splenic Gr-1+/CD11b+ myeloid suppressor cells in tumor-bearing animals and enhances antitumor immune activity. Clin Cancer Res 2005; 11 (18) 6713-6721
  • 214 Job S, Rapoud D, Dos Santos A. et al. Identification of four immune subtypes characterized by distinct composition and functions of tumor microenvironment in intrahepatic cholangiocarcinoma. Hepatology 2020; 72 (03) 965-981
  • 215 Gandhi L, Rodríguez-Abreu D, Gadgeel S. et al; KEYNOTE-189 Investigators. Pembrolizumab plus chemotherapy in metastatic non-small-cell lung cancer. N Engl J Med 2018; 378 (22) 2078-2092
  • 216 Schmid P, Adams S, Rugo HS. et al; IMpassion130 Trial Investigators. Atezolizumab and nab-paclitaxel in advanced triple-negative breast cancer. N Engl J Med 2018; 379 (22) 2108-2121
  • 217 Ueno M, Ikeda M, Morizane C. et al. Nivolumab alone or in combination with cisplatin plus gemcitabine in Japanese patients with unresectable or recurrent biliary tract cancer: a non-randomised, multicentre, open-label, phase 1 study. Lancet Gastroenterol Hepatol 2019; 4 (08) 611-621
  • 218 Monge C, Pehrsson EC, Xie C. et al. A Phase II study of pembrolizumab in combination with capecitabine and oxaliplatin with molecular profiling in patients with advanced biliary tract carcinoma. Oncologist 2022; 27 (03) e273-e285
  • 219 Sahai V, Griffith KA, Beg MS. et al. A randomized phase 2 trial of nivolumab, gemcitabine, and cisplatin or nivolumab and ipilimumab in previously untreated advanced biliary cancer: BilT-01. Cancer 2022; 128 (19) 3523-3530
  • 220 Oh DY, Lee KH, Lee DW. et al. Gemcitabine and cisplatin plus durvalumab with or without tremelimumab in chemotherapy-naive patients with advanced biliary tract cancer: an open-label, single-centre, phase 2 study. Lancet Gastroenterol Hepatol 2022; 7 (06) 522-532
  • 221 Oh DY, Ruth He A, Qin S. et al. Durvalumab plus gemcitabine and cisplatin in advanced biliary tract cancer. NEJM Evid 2022; 1 (08) EVIDoa2200015
  • 222 Ebia MI, Sankar K, Osipov A, Hendifar AE, Gong J. TOPAZ-1: a new standard of care for advanced biliary tract cancers?. Immunotherapy 2023; 15 (07) 473-476
  • 223 Kelley RK, Ueno M, Yoo C. et al; KEYNOTE-966 Investigators. Pembrolizumab in combination with gemcitabine and cisplatin compared with gemcitabine and cisplatin alone for patients with advanced biliary tract cancer (KEYNOTE-966): a randomised, double-blind, placebo-controlled, phase 3 trial. Lancet 2023; 401 (10391): 1853-1865
  • 224 Lo JH, Agarwal R, Goff LW, Heumann TR. Immunotherapy in biliary tract cancers: current standard-of-care and emerging strategies. Cancers (Basel) 2023; 15 (13) 3312
  • 225 Schoenfeld AJ, Hellmann MD. Acquired resistance to immune checkpoint inhibitors. Cancer Cell 2020; 37 (04) 443-455
  • 226 Bicer F, Kure C, Ozluk AA, El-Rayes BF, Akce M. Advances in immunotherapy for hepatocellular carcinoma (HCC). Curr Oncol 2023; 30 (11) 9789-9812
  • 227 Enrico D, Paci A, Chaput N, Karamouza E, Besse B. Antidrug antibodies against immune checkpoint blockers: impairment of drug efficacy or indication of immune activation?. Clin Cancer Res 2020; 26 (04) 787-792
  • 228 Kim C, Yang H, Kim I. et al. Association of high levels of antidrug antibodies against atezolizumab with clinical outcomes and T-cell responses in patients with hepatocellular carcinoma. JAMA Oncol 2022; 8 (12) 1825-1829
  • 229 Schumacher TN, Schreiber RD. Neoantigens in cancer immunotherapy. Science 2015; 348 (6230) 69-74
  • 230 Rosenthal R, Cadieux EL, Salgado R. et al; TRACERx Consortium. Neoantigen-directed immune escape in lung cancer evolution. Nature 2019; 567 (7749) 479-485
  • 231 Zaretsky JM, Garcia-Diaz A, Shin DS. et al. Mutations associated with acquired resistance to PD-1 blockade in melanoma. N Engl J Med 2016; 375 (09) 819-829
  • 232 Sade-Feldman M, Yizhak K, Bjorgaard SL. et al. Defining T cell states associated with response to checkpoint immunotherapy in melanoma. Cell 2018; 175 (04) 998-1013.e20
  • 233 Gettinger S, Choi J, Hastings K. et al. Impaired HLA class I antigen processing and presentation as a mechanism of acquired resistance to immune checkpoint inhibitors in lung cancer. Cancer Discov 2017; 7 (12) 1420-1435
  • 234 Gao J, Shi LZ, Zhao H. et al. Loss of IFN-γ pathway genes in tumor cells as a mechanism of resistance to anti-CTLA-4 therapy. Cell 2016; 167 (02) 397-404.e9
  • 235 Sucker A, Zhao F, Pieper N. et al. Acquired IFNγ resistance impairs anti-tumor immunity and gives rise to T-cell-resistant melanoma lesions. Nat Commun 2017; 8: 15440
  • 236 Spranger S, Bao R, Gajewski TF. Melanoma-intrinsic β-catenin signalling prevents anti-tumour immunity. Nature 2015; 523 (7559) 231-235
  • 237 Zhu C, Sakuishi K, Xiao S. et al. An IL-27/NFIL3 signalling axis drives Tim-3 and IL-10 expression and T-cell dysfunction. Nat Commun 2015; 6: 6072
  • 238 Yang C, Qian Q, Zhao Y. et al. Fibrinogen-like protein 1 promotes liver-resident memory T-cell exhaustion in hepatocellular carcinoma. Front Immunol 2023; 14: 1112672
  • 239 de Mingo Pulido Á, Gardner A, Hiebler S. et al. TIM-3 regulates CD103+ dendritic cell function and response to chemotherapy in breast cancer. Cancer Cell 2018; 33 (01) 60-74.e6
  • 240 Dixon KO, Tabaka M, Schramm MA. et al. TIM-3 restrains anti-tumour immunity by regulating inflammasome activation. Nature 2021; 595 (7865) 101-106
  • 241 Buisson S, Triebel F. LAG-3 (CD223) reduces macrophage and dendritic cell differentiation from monocyte precursors. Immunology 2005; 114 (03) 369-374
  • 242 Scheiner B, Roessler D, Phen S. et al. Efficacy and safety of immune checkpoint inhibitor rechallenge in individuals with hepatocellular carcinoma. JHEP Rep Innov Hepatol 2022; 5 (01) 100620
  • 243 Giraud J, Chalopin D, Blanc JF, Saleh M. Hepatocellular carcinoma immune landscape and the potential of immunotherapies. Front Immunol 2021; 12: 655697
  • 244 Chen DS, Mellman I. Elements of cancer immunity and the cancer-immune set point. Nature 2017; 541 (7637) 321-330
  • 245 Zemek RM, Chin WL, Nowak AK, Millward MJ, Lake RA, Lesterhuis WJ. Sensitizing the tumor microenvironment to immune checkpoint therapy. Front Immunol 2020; 11: 223
  • 246 Butterfield LH, Najjar YG. Immunotherapy combination approaches: mechanisms, biomarkers and clinical observations. Nat Rev Immunol 2024; 24: 399-416
  • 247 Galluzzi L, Senovilla L, Zitvogel L, Kroemer G. The secret ally: immunostimulation by anticancer drugs. Nat Rev Drug Discov 2012; 11 (03) 215-233
  • 248 Kroemer G, Galassi C, Zitvogel L, Galluzzi L. Immunogenic cell stress and death. Nat Immunol 2022; 23 (04) 487-500
  • 249 Di Federico A, Rizzo A, Carloni R. et al. Atezolizumab-bevacizumab plus Y-90 TARE for the treatment of hepatocellular carcinoma: preclinical rationale and ongoing clinical trials. Expert Opin Investig Drugs 2022; 31 (04) 361-369
  • 250 Reits EA, Hodge JW, Herberts CA. et al. Radiation modulates the peptide repertoire, enhances MHC class I expression, and induces successful antitumor immunotherapy. J Exp Med 2006; 203 (05) 1259-1271
  • 251 de la Torre-Aláez M, Matilla A, Varela M. et al. Nivolumab after selective internal radiation therapy for the treatment of hepatocellular carcinoma: a phase 2, single-arm study. J Immunother Cancer 2022; 10 (11) e005457
  • 252 Juloori A, Katipally RR, Lemons JM. et al. Phase 1 randomized trial of stereotactic body radiation therapy followed by nivolumab plus ipilimumab or nivolumab alone in advanced/unresectable hepatocellular carcinoma. Int J Radiat Oncol Biol Phys 2023; 115 (01) 202-213
  • 253 Sprooten J, Laureano RS, Vanmeerbeek I. et al. Trial watch: chemotherapy-induced immunogenic cell death in oncology. OncoImmunology 2023; 12 (01) 2219591
  • 254 Llovet JM, De Baere T, Kulik L. et al. Locoregional therapies in the era of molecular and immune treatments for hepatocellular carcinoma. Nat Rev Gastroenterol Hepatol 2021; 18 (05) 293-313
  • 255 Lencioni R, Kudo M, Erinjeri J. et al. EMERALD-1: a phase 3, randomized, placebo-controlled study of transarterial chemoembolization combined with durvalumab with or without bevacizumab in participants with unresectable hepatocellular carcinoma eligible for embolization. J Clin Oncol 2024; 42: LBA432-LBA432
  • 256 Ahmed M, Kumar G, Gourevitch S. et al. Radiofrequency ablation (RFA)-induced systemic tumor growth can be reduced by suppression of resultant heat shock proteins. Int J Hyperthermia 2018; 34 (07) 934-942
  • 257 Haen SP, Gouttefangeas C, Schmidt D. et al. Elevated serum levels of heat shock protein 70 can be detected after radiofrequency ablation. Cell Stress Chaperones 2011; 16 (05) 495-504
  • 258 Fukuhara H, Ino Y, Todo T. Oncolytic virus therapy: a new era of cancer treatment at dawn. Cancer Sci 2016; 107 (10) 1373-1379
  • 259 Li Y, Shen Y, Zhao R. et al. Oncolytic virotherapy in hepato-bilio-pancreatic cancer: the key to breaking the log jam?. Cancer Med 2020; 9 (09) 2943-2959
  • 260 Kim MK, Breitbach CJ, Moon A. et al. Oncolytic and immunotherapeutic vaccinia induces antibody-mediated complement-dependent cancer cell lysis in humans. Sci Transl Med 2013; 5 (185) 185ra63
  • 261 Heo J, Reid T, Ruo L. et al. Randomized dose-finding clinical trial of oncolytic immunotherapeutic vaccinia JX-594 in liver cancer. Nat Med 2013; 19 (03) 329-336
  • 262 Moehler M, Heo J, Lee HC. et al. Vaccinia-based oncolytic immunotherapy Pexastimogene Devacirepvec in patients with advanced hepatocellular carcinoma after sorafenib failure: a randomized multicenter Phase IIb trial (TRAVERSE). OncoImmunology 2019; 8 (08) 1615817
  • 263 Lurje I, Werner W, Mohr R, Roderburg C, Tacke F, Hammerich L. In situ vaccination as a strategy to modulate the immune microenvironment of hepatocellular carcinoma. Front Immunol 2021; 12: 650486
  • 264 Le Naour J, Galluzzi L, Zitvogel L, Kroemer G, Vacchelli E. Trial watch: TLR3 agonists in cancer therapy. OncoImmunology 2020; 9 (01) 1771143
  • 265 Ohto U, Shibata T, Tanji H. et al. Structural basis of CpG and inhibitory DNA recognition by Toll-like receptor 9. Nature 2015; 520 (7549) 702-705
  • 266 Zhou Z, Lin L, An Y. et al. The combination immunotherapy of TLR9 agonist and OX40 agonist via intratumoural injection for hepatocellular carcinoma. J Hepatocell Carcinoma 2021; 8: 529-543
  • 267 Byrne KT, Vonderheide RH. CD40 stimulation obviates innate sensors and drives T cell immunity in cancer. Cell Rep 2016; 15 (12) 2719-2732
  • 268 Diggs LP, Ruf B, Ma C. et al. CD40-mediated immune cell activation enhances response to anti-PD-1 in murine intrahepatic cholangiocarcinoma. J Hepatol 2021; 74 (05) 1145-1154
  • 269 Lee WS, Yang H, Chon HJ, Kim C. Combination of anti-angiogenic therapy and immune checkpoint blockade normalizes vascular-immune crosstalk to potentiate cancer immunity. Exp Mol Med 2020; 52 (09) 1475-1485
  • 270 Chew V, Lee YH, Pan L. et al. Immune activation underlies a sustained clinical response to yttrium-90 radioembolisation in hepatocellular carcinoma. Gut 2019; 68 (02) 335-346
  • 271 Liu Y, Xun Z, Ma K. et al. Identification of a tumour immune barrier in the HCC microenvironment that determines the efficacy of immunotherapy. J Hepatol 2023; 78 (04) 770-782
  • 272 Zulaziz N, Chai SJ, Lim KP. The origins, roles and therapies of cancer associated fibroblast in liver cancer. Front Oncol 2023; 13: 1151373
  • 273 Feig C, Jones JO, Kraman M. et al. Targeting CXCL12 from FAP-expressing carcinoma-associated fibroblasts synergizes with anti-PD-L1 immunotherapy in pancreatic cancer. Proc Natl Acad Sci U S A 2013; 110 (50) 20212-20217
  • 274 Mariathasan S, Turley SJ, Nickles D. et al. TGFβ attenuates tumour response to PD-L1 blockade by contributing to exclusion of T cells. Nature 2018; 554 (7693) 544-548
  • 275 Ilyas SI, Affo S, Goyal L. et al. Cholangiocarcinoma - novel biological insights and therapeutic strategies. Nat Rev Clin Oncol 2023; 20 (07) 470-486
  • 276 Chen Y, Ramjiawan RR, Reiberger T. et al. CXCR4 inhibition in tumor microenvironment facilitates anti-programmed death receptor-1 immunotherapy in sorafenib-treated hepatocellular carcinoma in mice. Hepatology 2015; 61 (05) 1591-1602
  • 277 Tan J, Fan W, Liu T. et al. TREM2+ macrophages suppress CD8+ T-cell infiltration after transarterial chemoembolisation in hepatocellular carcinoma. J Hepatol 2023; 79 (01) 126-140
  • 278 Régnier P, Vetillard M, Bansard A. et al. FLT3L-dependent dendritic cells control tumor immunity by modulating Treg and NK cell homeostasis. Cell Rep Med 2023; 4 (12) 101256
  • 279 Yu Z, Guo J, Hu M, Gao Y, Huang L. Icaritin exacerbates mitophagy and synergizes with doxorubicin to induce immunogenic cell death in hepatocellular carcinoma. ACS Nano 2020; 14 (04) 4816-4828
  • 280 Conche C, Finkelmeier F, Pešić M. et al. Combining ferroptosis induction with MDSC blockade renders primary tumours and metastases in liver sensitive to immune checkpoint blockade. Gut 2023; 72 (09) 1774-1782
  • 281 Leslie J, Mackey JBG, Jamieson T. et al. CXCR2 inhibition enables NASH-HCC immunotherapy. Gut 2022; 71 (10) 2093-2106
  • 282 Evans TRJ, Basu B, Hubner R. et al. A phase I/II study of the CXCR2 inhibitor, AZD5069, in combination with durvalumab, in patients (pts) with advanced hepatocellular carcinoma (HCC). J Clin Oncol 2023; 41: TPS631
  • 283 Zhu Y, Yang J, Xu D. et al. Disruption of tumour-associated macrophage trafficking by the osteopontin-induced colony-stimulating factor-1 signalling sensitises hepatocellular carcinoma to anti-PD-L1 blockade. Gut 2019; 68 (09) 1653-1666
  • 284 Loeuillard E, Yang J, Buckarma E. et al. Targeting tumor-associated macrophages and granulocytic myeloid-derived suppressor cells augments PD-1 blockade in cholangiocarcinoma. J Clin Invest 2020; 130 (10) 5380-5396
  • 285 Akhurst RJ, Hata A. Targeting the TGFβ signalling pathway in disease. Nat Rev Drug Discov 2012; 11 (10) 790-811
  • 286 Yoo C, Javle MM, Verdaguer Mata H. et al. Phase 2 trial of bintrafusp alfa as second-line therapy for patients with locally advanced/metastatic biliary tract cancers. Hepatology 2023; 78 (03) 758-770
  • 287 Oronsky B, Cabrales P, Alizadeh B. et al. TGF-β: the apex predator of immune checkpoints. Future Oncol 2023; 19 (30) 2013-2015
  • 288 Tawbi HA, Schadendorf D, Lipson EJ. et al; RELATIVITY-047 Investigators. Relatlimab and nivolumab versus nivolumab in untreated advanced melanoma. N Engl J Med 2022; 386 (01) 24-34
  • 289 Harding JJ, Moreno V, Bang YJ. et al. Blocking TIM-3 in treatment-refractory advanced solid tumors: a phase Ia/b study of LY3321367 with or without an anti-PD-L1 antibody. Clin Cancer Res 2021; 27 (08) 2168-2178
  • 290 Hollebecque A, Chung HC, de Miguel MJ. et al. Safety and antitumor activity of α-PD-L1 antibody as monotherapy or in combination with α-TIM-3 antibody in patients with microsatellite instability-high/mismatch repair-deficient tumors. Clin Cancer Res 2021; 27 (23) 6393-6404
  • 291 Freidlin B, Korn EL. Two-by-two factorial cancer treatment trials: is sufficient attention being paid to possible interactions?. J Natl Cancer Inst 2017; 109 (09) djx146
  • 292 Llovet JM. Exploring a new pathway for biomarker-based approval of immunotherapies. Nat Rev Clin Oncol 2023; 20 (05) 279-280
  • 293 Chen R, Zheng D, Li Q. et al. Immunotherapy of cholangiocarcinoma: therapeutic strategies and predictive biomarkers. Cancer Lett 2022; 546: 215853
  • 294 Magen A, Hamon P, Fiaschi N. et al. Intratumoral dendritic cell-CD4+ T helper cell niches enable CD8+ T cell differentiation following PD-1 blockade in hepatocellular carcinoma. Nat Med 2023; 29 (06) 1389-1399