Synthesis
DOI: 10.1055/a-2335-8516
review

Recent Advances in Ligand-Controlled Regio- or Stereodivergent Transition-Metal-Catalyzed Hydroelementation (H[E]) (E = H, B, Si, Ge) of C–C Unsaturated Systems

Sehoon Park
a   Department of Chemistry, Guangdong Technion Israel Institute of Technology, Shantou, Guangdong 515063, P. R. of China
b   Technion-Israel Institute of Technology, Technion City, 32000 Haifa, Israel
› Author Affiliations
S.P. is grateful to the Guangdong Technion Israel Institute of Technology (GTIIT) for a GTIIT–Technion seed grant (KD2300040).


Abstract

Reductive functionalization of C–C unsaturated systems, including alkenes and alkynes, with a range of hydroelements (H[E]) is one of the most fundamental and highly practical methods for the synthesis of functionalized hydrocarbons. Since the resultant hydrocarbon products have strong applicability as synthetic intermediates, numerous homogeneous organo(metallic) catalysts have been intensively utilized to date for reductive functionalization reactions. In particular, well-defined transition-metal-based catalysts capable of controlling the regio- or stereoselectivity of a product by harnessing the addition of H[E] (E = H, B, Si, Ge) into Cα–Cβ unsaturated bonds have drawn special attention. In this review, we describe recent examples of transition-metal catalytic systems (M = Fe, Co, Rh, Pd, Ni) for regio- or stereodivergent hydroelementation reactions of (conjugated) alkenes, alkynes, and allenes to give a pair of isomeric products in high selectivities from the same starting compounds simply by variation of the ligand. Mechanistic aspects of the ligand-controlled selectivity divergence are discussed in detail on the basis of experimental observations and/or computational insights.

1 Introduction

2 Hydroelementation of Alkenes and Alkynes

3 Hydroelementation of Conjugated Dienes and Diynes

4 Hydroelementation of Allenes

5 Summary and Outlook



Publication History

Received: 15 April 2024

Accepted after revision: 29 May 2024

Accepted Manuscript online:
31 May 2024

Article published online:
01 July 2024

© 2024. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

    • 1a Tolman CA. Chem. Rev. 1977; 77: 313
    • 1b Crabtree RH. The Organometallic Chemistry of the Transition Metals. John Wiley & Sons; Hoboken: 2014
    • 2a Lawrance GA. Introduction to Coordination Chemistry . John Wiley & Sons; Chichester: 2009
    • 2b Hartwig JF. Organotransition Metal Chemistry: From Bonding to Catalysis . University Science Books; Mill Valley (CA, USA): 2010
    • 2c Ligand Design in Metal Chemistry: Reactivity and Catalysis . Stradiotto M, Lundgren RJ. John Wiley & Sons; Chichester: 2016
    • 3a Uhe A, Hölscher M, Leitner W. Chem. Eur. J. 2012; 18: 170
    • 3b Hölscher M, Uhe A, Leitner W. J. Organomet. Chem. 2013; 748: 13
    • 3c Nielsen MC, Bonney KJ, Schoenebeck F. Angew. Chem. Int. Ed. 2014; 53: 5903
    • 3d Jindal G, Sunoj RB. Org. Biomol. Chem. 2014; 12: 2745
    • 3e Straker RN, Peng Q, Mekareeya A, Paton RS, Anderson EA. Nat. Commun. 2016; 7: 10109
    • 3f Guan Y, Wheeler SE. Angew. Chem. Int. Ed. 2017; 56: 9101
    • 3g Kwon D.-H, Fuller JT, Kilgore UJ, Sydora OL, Bischof SM, Ess DH. ACS Catal. 2018; 8: 1138
    • 3h Korenaga T, Sasaki R, Takemoto T, Yasuda T, Watanabe M. Adv. Synth. Catal. 2018; 360: 322
    • 4a Jäkel C, Paciello R. Chem. Rev. 2006; 106: 2912
    • 4b Goudriaan PE, van Leeuwen PW. N. M, Birkholz M.-N, Reek JN. H. Eur. J. Inorg. Chem. 2008; 2939
    • 4c Collins KD, Gensch T, Glorius F. Nat. Chem. 2014; 6: 859
    • 4d Renom-Carrasco M, Lefort L. Chem. Soc. Rev. 2018; 47: 5038
    • 4e Isbrandt ES, Sullivan RJ, Newman SG. Angew. Chem. Int. Ed. 2019; 58: 7180
    • 5a Noyori R, Takaya H. Acc. Chem. Res. 1990; 23: 345
    • 5b Hayashi T. Acc. Chem. Res. 2000; 33: 354
    • 5c Kamer PC. J, van Leeuwen PW. N. M, Reek JN. H. Acc. Chem. Res. 2001; 34: 895
    • 5d Marko IE, Stérin S, Buison O, Mignani G, Branlard P, Tinant B, Declercq J.-P. Science 2002; 298: 204
    • 5e Arrayás RG, Adrio J, Carretero JC. Angew. Chem. Int. Ed. 2006; 45: 7674
    • 5f Kantchev EA. B, O’Brien CJ, Organ MG. Angew. Chem. Int. Ed. 2007; 46: 2768
    • 5g Martin R, Buchwald SL. Acc. Chem. Res. 2008; 41: 1461
    • 5h Fortman GC, Nolan SP. Chem. Soc. Rev. 2011; 40: 5151
    • 5i Surry DS, Buchwald SL. Chem. Sci. 2011; 2: 27
    • 5j Hartwig JF. Chem. Soc. Rev. 2011; 40: 1992
    • 5k Tondreau AM, Atienza CC. H, Weller KJ, Nye SA, Lewis KM, Delis JG. P, Chirik PJ. Science 2012; 335: 567
    • 5l Valente C, Calimsiz S, Hoi KH, Mallik D, Sayah M, Organ MG. Angew. Chem. Int. Ed. 2012; 51: 3314
    • 5m Ye B, Cramer N. Acc. Chem. Res. 2015; 48: 1308
    • 5n Smith KT, Berritt S, González-Moreiras M, Ahn S, Smith III MR, Baik M.-H, Mindiola DJ. Science 2016; 351: 1424
    • 5o Cook AK, Schimler SD, Matzger AJ, Sanford MS. Science 2016; 351: 1421
    • 5p Janssen-Müller D, Schlepphorst C, Glorius F. Chem. Soc. Rev. 2017; 46: 4845
    • 5q Zhao Q, Meng G, Nolan SP, Szostak M. Chem. Rev. 2020; 120: 1981
  • 6 Matsuoka W, Harabuchi Y, Maeda S. ACS Catal. 2023; 13: 5697
    • 7a Rylander PN. Catalytic Hydrogenation in Organic Syntheses . Academic Press; San Diego: 1979
    • 7b Pelter A, Smith K, Brown HC. Borane Reagents . Academic Press; San Diego: 1988
    • 7c Ojima I. The Chemistry of Organic Silicon Compounds . Patai S, Rappoport Z. John Wiley & Sons; Chichester: 1989: 1479
    • 7d Smith K, Pelter A. Hydroboration of C=C and C≡C . In Comprehensive Organic Synthesis, Vol. 8. Trost BM, Fleming I. Pergamon; Oxford: 1991: 703
    • 7e Comprehensive Handbook on Hydrosilylation . Marciniec B. Pergamon Press; Oxford: 1992
    • 7f Beletskaya I, Pelter A. Tetrahedron 1997; 53: 4957
    • 7g Trost BM, Ball ZT. Synthesis 2005; 853
    • 7h Marciniec B. Coord. Chem. Rev. 2005; 249: 2374
    • 7i Handbook of Homogeneous Hydrogenation . de Vries JG, Elsevier CJ. Wiley-VCH; Weinheim: 2007
    • 7j Modern Reduction Methods . Andersson PG, Munslow IJ. John Wiley & Sons; Weinheim: 2008
    • 7k Denmark SE. Organic Reactions, Vol 71. John Wiley Sons; Hoboken: 2008
    • 7l Nakajima Y, Shimada S. RSC Adv. 2015; 5: 20603
    • 7m Sun J, Deng L. ACS Catal. 2016; 6: 290
    • 7n Collins BS. L, Wilson CM, Myers EL, Aggarwal VK. Angew. Chem. Int. Ed. 2017; 129: 11860
    • 7o Chen J, Lu Z. Org. Chem. Front. 2018; 5: 260
    • 7p Alami M, Hamze A, Provot O. ACS Catal. 2019; 9: 3437
    • 8a Hitchcock PB, Lappert MF, Warhurst NJ. W. Angew. Chem., Int. Ed. Engl. 1991; 30: 438
    • 8b Marko IE, Steŕin S, Buisine O, Berthon G, Michaud G, Tinant B, Declercq J.-P. Adv. Synth. Catal. 2004; 346: 1429
    • 8c Buisine O, Berthon-Gelloz G, Brière J.-F, Stérin S, Mignani G, Branlard P, Tinant B, Declercq J.-P, Marko I. Chem. Commun. 2005; 3856
    • 8d Marciniec B, Posała K, Kownacki I, Kubicki M, Taylor R. ChemCatChem 2012; 4: 1935
    • 8e Bernhammer JC, Huynh HV. Organometallics 2014; 33: 172
    • 9a Pukhnarevitch VB, Lukevics E, Kopylova LI, Voronkov M. Perspectives of Hydrosilylation . Institute for Organic Synthesis; Riga: 1992
    • 9b Langkopf E, Schinzer D. Chem. Rev. 1995; 95: 1375
    • 9c Miyaura N, Suzuki A. Chem. Rev. 1995; 95: 2457
    • 9d Lewis LN, Stein J, Gao Y, Colborn RE, Hutchins G. Platinum Met. Rev. 1997; 41: 66
    • 9e Pereyre M, Quintard J.-P, Rahm A. Tin in Organic Synthesis . Butterworth-Heinemann; London: 2013
    • 9f Lennox AJ, Lloyd-Jones GC. Chem. Soc. Rev. 2014; 43: 412
    • 9g Hu B, DiMagno SG. Org. Biomol. Chem. 2015; 13: 3844
    • 9h Indukuri K, Cornelissen L, Riant O. Synthesis 2016; 48: 4400
    • 11a Magre M, Szewczyk M, Rueping M. Curr. Opin. Green Sustainable Chem. 2021; 32: 100526
    • 11b Saptal VB, Wang R, Park S. RSC Adv. 2020; 10: 43539
  • 12 Beller M, Seayad J, Tillack A, Jiao H. Angew. Chem. Int. Ed. 2004; 43: 3368
    • 13a Wang R, Park S. ChemCatChem 2021; 13: 1898
    • 13b Bazkiaei AR, Findlater M, Gorden AE. V. Org. Biomol. Chem. 2022; 20: 3675
  • 14 Nájera C, Beletskaya IP, Yus M. Chem. Soc. Rev. 2019; 48: 4515
  • 15 Mahatthananchai J, Dumas AM, Bode JW. Angew. Chem. Int. Ed. 2012; 51: 10954
  • 16 Peng J.-B, Wu X.-F. Angew. Chem. Int. Ed. 2018; 57: 1152
  • 17 Lee Y.-C, Kumar K, Waldmann H. Angew. Chem. Int. Ed. 2018; 57: 5212
  • 18 Ke Y, Li W, Liu W, Kong W. Sci. China Chem. 2023; 66: 2951
  • 19 Kumar RR, Kagan HB. Adv. Synth. Catal. 2010; 352: 231
  • 20 Miller LC, Sarpong R. Chem. Soc. Rev. 2011; 40: 4550
  • 21 Funken N, Zhang Y.-Q, Gansäuer A. Chem. Eur. J. 2017; 23: 19
  • 22 Zhan G, Du W, Chen Y.-C. Chem. Soc. Rev. 2017; 46: 1675
  • 23 Beletskaya IP, Nájera C, Yus M. Chem. Rev. 2018; 118: 5080
  • 24 Xu L.-W, Li L, Lai G.-Q. Mini-Rev. Org. Chem. 2007; 4: 217
  • 25 Sakakibara Y, Murakami K. ACS Catal. 2022; 12: 1857
  • 26 Chintawar CC, Yadav AK, Kumar A, Sanchenti SP, Patil NT. Chem. Rev. 2021; 121: 8478
  • 27 Bai X.-Y, Zhao W, Sun X, Li B.-J. J. Am. Chem. Soc. 2019; 141: 19870
  • 28 Xu J.-L, Xu Z.-Y, Wang Z.-L, Ma W.-W, Sun X.-Y, Fu Y, Xu Y.-H. J. Am. Chem. Soc. 2022; 144: 5535
    • 29a Brown HC, Zweifel G. J. Am. Chem. Soc. 1961; 83: 486
    • 29b Tamao K, Ishida N, Tanaka T, Kumada M. Organometallics 1983; 2: 1694
    • 29c Brown HC, Singaram B. Acc. Chem. Res. 1988; 21: 287
    • 29d Tamao K, Thoma T, Inui N, Nakayama O, Ito Y. Tetrahedron Lett. 1990; 31: 7333
    • 29e Matteson DS. Stereodirected Synthesis with Organoboranes 1995; 48-54
    • 29f Brook MA. Silicon in Organic, Organometallic, and Polymer Chemistry. John Wiley & Sons; New York: 2000
    • 29g Hall DG. Structure, Properties, and Preparation of Boronic Acid Derivatives. Overview of Their Reactions and Applications. In Boronic Acids: Preparation, Applications in Organic Synthesis and Medicine. Hall DG. Wiley-VCH; Weinheim: 2005: 1-99
  • 30 Bochat AJ, Shoba VM, Takacs JM. Angew. Chem. Int. Ed. 2019; 58: 9434
  • 31 Chakrabarty S, Palencia H, Morton MD, Carr RO, Takacs JM. Chem. Sci. 2019; 10: 4854
  • 32 Wang C, Teo WJ, Ge S. ACS Catal. 2017; 7: 855
  • 33 Docherty JH, Dominey AP, Thomas SP. Asian J. Org. Chem. 2021; 10: 2379
    • 34a Ojima I, Nihonyanagi M, Nagai Y. J. Chem. Soc., Chem. Commun. 1972; 938a
    • 34b Brookhart M, Grant BE. J. Am. Chem. Soc. 1993; 115: 2151
    • 35a Meals RN. Pure Appl. Chem. 1966; 13: 141
    • 35b Chatgilialoglu C. Acc. Chem. Res. 1992; 25: 188
    • 35c Giorgi G, De Angelis F, Re N, Sgamellotti A. J. Mol. Struct. 2003; 623: 277
    • 35d Yang X, Wang C. Chin. J. Chem. 2018; 36: 1047
    • 35e Dong J, Yuan XA, Yan Z, Mu L, Ma J, Zhu C, Xie J. Nat. Chem. 2021; 13: 182
    • 36a Isobe M, Nishizawa R, Nishikawa T, Yoza K. Tetrahedron Lett. 1999; 40: 6927
    • 36b Tojo S, Isobe M. Tetrahedron Lett. 2005; 46: 381
    • 36c Yong L, Kirleis K, Butenschön H. Adv. Synth. Catal. 2006; 348: 833
    • 36d Konno T, Taku K, Tamada S, Moriyasu K, Ishihara T. Org. Biomol. Chem. 2009; 7: 1167
    • 36e Huang K.-H, Isobe M. Eur. J. Org. Chem. 2014; 4733
    • 36f Mo Z, Xiao J, Gao Y, Deng L. J. Am. Chem. Soc. 2014; 136: 17414
    • 36g Guo J, Lu Z. Angew. Chem. Int. Ed. 2016; 55: 10835
    • 36h Zuo Z, Yang J, Huang Z. Angew. Chem. Int. Ed. 2016; 55: 10839
    • 36i Rivera-Hernańdez Fallon A, Fallon BJ, Ventre S, Simon C, Tremblay M.-H, Gontard G, Derat E, Amatore M, Aubert C, Petit M. Org. Lett. 2016; 18: 4242
    • 36j Guo J, Lu Z. Angew. Chem. Int. Ed. 2017; 56: 615
    • 36k Teo WJ, Wang C, Tan YW, Ge S. Angew. Chem. Int. Ed. 2017; 56: 4328
    • 36l Du X, Hou W, Zhang Y, Huang Z. Org. Chem. Front. 2017; 4: 1517
    • 36m Wu C, Teo WJ, Ge S. ACS Catal. 2018; 8: 5896
  • 37 Wu G, Chakraborty U, von Wangelin AJ. Chem. Commun. 2018; 54: 12322
  • 38 Pabst TP, Chirik PJ. Organometallics 2021; 40: 813
  • 39 Spencer MD, Shelby QD, Girplami GS. J. Am. Chem. Soc. 2007; 129: 1860
  • 40 Smith EE, Du G, Fanwick PE, Abu-Omar MM. Organometallics 2010; 29: 6527
  • 41 Ding S, Song L.-J, Chung LW, Zhang X, Sun J, Wu Y.-D. J. Am. Chem. Soc. 2013; 135: 13835
  • 42 Hu M.-Y, He P, Qiao T.-Z, Sun W, Li W.-T, Lian J, Li J.-H, Zhu S.-F. J. Am. Chem. Soc. 2020; 142: 16894
    • 43a Denmark SE, Sweis RF. Organosilicon Compounds in Cross-Coupling Reactions . In Metal-Catalyzed Cross-Coupling Reactions . de Meijere A, Diederich F. Wiley-VCH; Weinheim: 2004: 163-216
    • 43b Cordovilla C, Bartolome C, Martínez-Ilarduya JM, Espinet P. ACS Catal. 2015; 5: 3040
    • 44a Spivey AC, Gripton CJ. G, Hannah JP. Curr. Org. Synth. 2004; 1: 211
    • 44b Ramesh R, Reddy DS. J. Med. Chem. 2018; 61: 3779
    • 44c Johnson TW, Gallego RA, Edwards MP. J. Med. Chem. 2018; 61: 6401
    • 45a Dobbs AP, Chio FK. I. Hydrometallation Group 4 (Si, Sn, Ge, and Pb) . In Comprehensive Organic Synthesis II, 2nd ed. Knochel P. Elsevier; Amsterdam: 2014: 964-998
    • 45b Frihed TG, Fürstner A. Bull. Chem. Soc. Jpn. 2016; 89: 135
  • 46 Debrauwer V, Turlik A, Rummler L, Prescimone A, Blanchard N, Houk KN, Bizet V. J. Am. Chem. Soc. 2020; 142: 11153
  • 47 Tooke DM, Wilting J, Vogt D, Spek AL. Acta Crystallogr., Sect. E: Struct. Rep. Online 2005; 61: o2406
  • 48 Ichinose Y, Oda H, Oshima K, Utimoto K. Bull. Chem. Soc. Jpn. 1987; 60: 3468
  • 49 Chen Z, Nie B, Li X, Liu T, Li C, Huang J. Chem. Sci. 2024; 15: 2236
  • 50 Sundararaju B, Fürstner A. Angew. Chem. Int. Ed. 2013; 52: 14050
    • 51a Liu X, Henderson JA, Sasaki T, Kishi Y. J. Am. Chem. Soc. 2009; 131: 16678
    • 51b Yap C, Lenagh-Snow GM. J, Karad SN, Lewis W, Diorazio LJ, Lam HW. Angew. Chem. Int. Ed. 2017; 56: 8216
    • 51c Yang Y, Jiang J, Yu H, Shi J. Chem. Eur. J. 2018; 24: 178
    • 51d Jiang J, Lu H, Cao L, Zhao C, Liu Y, Ackermann L, Ke Z. ACS Catal. 2019; 9: 9387
    • 52a Satoh M, Nomoto Y, Miyaura N, Suzuki A. Tetrahedron Lett. 1989; 30: 3789
    • 52b Matsumoto Y, Hayashi T. Tetrahedron Lett. 1991; 32: 3387
    • 52c Zaidlewicz M, Meller J. Tetrahedron Lett. 1997; 38: 7279
    • 52d Wu JY, Moreau B, Ritter T. J. Am. Chem. Soc. 2009; 131: 12915
    • 52e Ely RJ, Morken JP. J. Am. Chem. Soc. 2010; 132: 2534
    • 52f Semba K, Shinomiya M, Fujihara T, Terao J, Tsuji Y. Chem. Eur. J. 2013; 19: 7125
    • 52g Obligacion JV, Chirik PJ. J. Am. Chem. Soc. 2013; 135: 19107
    • 52h Cao Y, Zhang Y, Zhang L, Zhang D, Leng X, Huang Z. Org. Chem. Front. 2014; 1: 1101
    • 52i Ibrahim AD, Entsminger SW, Fout AR. ACS Catal. 2017; 7: 3730
  • 53 Peng S, Yang J, Liu G, Huang Z. Sci. China Chem. 2019; 62: 336
  • 54 Komine N, Mitsui T, Kikuchi S, Hirano M. Organometallics 2020; 39: 4510
  • 55 Komine N, Abe M, Suda R, Hirano M. Organometallics 2015; 34: 432
    • 56a Caseri W, Pregosin PS. J. Organomet. Chem. 1988; 356: 259
    • 56b Gómez-Gallego M, Sierra MA. Chem. Rev. 2011; 111: 4857
    • 56c Meister TK, Riener K, Gigler P, Stohrer J, Herrmann WA, Kühn FE. ACS Catal. 2016; 6: 1274
    • 57a Lv X, Wang F, Zhou P, Ye L, Xie W, Xu H, Yu H. Nat. Commun. 2016; 7: 12851
    • 57b Zhou YJ, Kerkhoven EJ, Nielsen J. Nat. Energy 2018; 3: 925
    • 58a Lappert MF, Nile TA, Takahashi S. J. Organomet. Chem. 1974; 72: 425
    • 58b Ojima I, Donovan RJ, Clos N. Organometallics 1991; 10: 2606
    • 58c Michalska ZM, Ostaszewski B, Strzelec K. J. Organomet. Chem. 1995; 496: 19
    • 58d Gustafsson M, Frejd T. J. Chem. Soc., Perkin Trans. 1 2002; 102
    • 58e Hilt G, Lüers S, Schmidt F. Synthesis 2004; 634
    • 58f Pop R, Cui JL, Adriaenssens L, Comte V, Le Gendre P. Synlett 2011; 679
    • 58g Srinivas V, Nakajima Y, Ando W, Sato K, Shimada S. Catal. Sci. Technol. 2015; 5: 2081
    • 58h Ibrahim AD, Entsminger SW, Zhu L, Fout AR. ACS Catal. 2016; 6: 3589
  • 59 Kuai C.-S, Ji D.-W, Zhao C.-Y, Liu H, Hu Y.-C, Chen Q.-A. Angew. Chem. Int. Ed. 2020; 59: 19115
  • 60 Yang S.-N, Liu C.-H, He L.-B, Zheng H, Kuai C.-S, Wan B, Ji D.-W, Chen Q.-A. Org. Chem. Front. 2023; 10: 2204
  • 61 Sang HL, Wu C, Phua GG. D, Ge S. ACS Catal. 2019; 9: 10109
  • 62 Zweifel G, Polston NL. J. Am. Chem. Soc. 1970; 92: 4068
    • 64a Yamamoto Y, Fujikawa R, Yamada A, Miyaura N. Chem. Lett. 1999; 28: 1069
    • 64b Wu C, Ge S. Chem. Sci. 2020; 11: 2783
    • 64c Li C, Yang Z, Wang L, Guo Y, Huang Z, Ma S. Angew. Chem. Int. Ed. 2020; 59: 6278
    • 64d Yang Y, Zeng J.-H, Zhan Z.-P. Org. Chem. Front. 2021; 8: 2537
    • 64e Zhao Y, Ge S. Angew. Chem. Int. Ed. 2021; 60: 2149
  • 65 Yang X, Yuan C, Ge S. Chem 2023; 9: 198
    • 66a Kim HR, Yun J. Chem. Commun. 2011; 47: 2943
    • 66b Xu S, Zhang Y, Li B, Liu SY. J. Am. Chem. Soc. 2016; 138: 14566
    • 66c Yuan K, Suzuki N, Mellerup SK, Wang X, Yamaguchi S, Wang S. Org. Lett. 2016; 18: 720
    • 67a Mandai T. Transition-Metal-Catalyzed Addition/Cycloaddition of Allenes. In Modern Allene Chemistry. Krause N, Hashmi AS. K. Wiley-VCH; Weinheim: 2004: 925-972
    • 67b Bonrath W, Medlock JA, Müller MA. Catalytic Reduction of Alkynes and Allenes . In Science of Synthesis, Vol. 5. de Vries JG. Georg Thieme Verlag; Stuttgart: 2018: 195-228
    • 67c Parker PD, Hou X, Dong VM. J. Am. Chem. Soc. 2021; 143: 6724
  • 68 Shayegan MH, Li Z.-Y, Cui X. Chem. Eur. J. 2022; 28: e202103402
  • 69 Addis D, Das S, Junge K, Beller M. Angew. Chem. Int. Ed. 2011; 50: 6004
  • 70 Jos S, Tan C, Thilmany P, Saadane A, Slebodnick C, Evano G, Santos WL. Chem. Commun. 2022; 58: 13751